参考:Tomcat的3个参数acceptCount、maxConnections、maxThreads
Tomcat 由 2 大核心组件组成:Connector、Container
请求在 tomcat 服务器的处理过程(BIO 模式)
客户端与服务端完成三次握手建立了连接,连接信息会存放在 ServerSocket 连接请求的队列中(队列长度为 acceptCount)
如果提交到线程池的任务数没有超过 maxConnections,那么就 ServerSocket.accept() 返回 socket 对象,封装为任务提交到线程池;
如果提交的任务数超过了 maxConnections,则阻塞
任务提交到线程池后,分三种情况:
若队列已满,任何再来的请求将会收到 connection refused 错误,直到有可用的资源来处理它们
当任务被处理完后,则销毁任务以及任务中的 socket 对象,该连接被释放
Connector 在处理 HTTP 请求时,会使用不同的 protocol。不同的 Tomcat 版本支持的 protocol 不同,其中最典型的 protocol 包括BIO、NIO 和 APR(Tomcat7 中支持这 3 种,Tomcat8 增加了对 NIO2 的支持,而到了 Tomcat8.5 和 Tomcat9.0,则去掉了对 BIO 的支持)。
BIO(Blocking IO):阻塞的 IO
NIO(Non-blocking IO):非阻塞的 IO
APR(Apache Portable Runtime):是 Apache 可移植运行库,利用本地库可以实现高可扩展性、高性能;
Apr 是在 Tomcat 上运行高并发应用的首选模式,但需要安装 apr、apr-utils、tomcat-native 等包。
在 BIO 实现的 Connector 中,处理请求的主要实体是 JIoEndpoint 对象。
JIoEndpoint 维护了 Acceptor 和 Worker:
在 NIO 实现的 Connector 中,处理请求的主要实体是 NIoEndpoint 对象。
NIoEndpoint 中除了包含 Acceptor 和 Worker 外,还使用了 Poller,处理流程如下图所示:
在 NIoEndpoint 处理请求的过程中,无论是 Acceptor 接收 socket,还是线程处理请求,使用的仍然是阻塞方式;但在 ”读取socket并交给Worker中的线程” 的这个过程中,使用非阻塞的 NIO 实现,这是 NIO 模式与 BIO 模式的最主要区别(其他区别对性能影响较小,暂时略去不提)。而这个区别,在并发量较大的情形下可以带来 Tomcat 效率的显著提升。
maxConnections :Tomcat 在任意时刻接收和处理的最大连接数(可以提交给线程池的最大任务数)
当 Tomcat 接收的连接数达到 maxConnections 时,Acceptor 线程不会读取 accept 队列中的连接(socket);这时 accept 队列中的线程会一直阻塞着,直到 Tomcat 接收的连接数小于 maxConnections。
如果设置为 -1,则连接数不受限制。
默认值与连接器使用的协议有关:
NIO 的默认值是 10000
APR/native 的默认值是 8192
在windows下,APR/native 的 maxConnections 值会自动调整为设置值以下最大的 1024 的整数倍
如设置为 2000,则最大值实际是 1024
BIO 的默认值为 maxThreads(如果配置了 Executor,则默认值是 Executor 的 maxThreads)
acceptCount :允许的最大并发连接数(瞬时连接、瞬时并发数),为 ServerSocket 连接请求的队列长度,默认值为 100
请求连接在任务队列中时,客户端显示为浏览器显示“转圈”
当 accept 队列中连接的个数达到 acceptCount 时,队列满,进来的请求一律被拒绝。
实际场景中,常见的表象是 nginx 响应 502,Tomcat 中没有任何 access 日志,此时应该调大该值。
minProcessors:服务器启动时,线程池创建的最少线程数
maxProcessors(maxThreads ):线程池最大连接线程数。默认值为 200
线程数小于此数时,每次来任务若有空闲线程,使用空闲线程处理,如果没有空闲线程则新建线程处理
如果该 Connector 绑定了 Executor,这个值会被忽略,因为该 Connector 将使用绑定的 Executor,而不是内置的线程池来执行任务。
注:
maxThreads 规定的是最大的线程数目,并不是实际 running 的 CPU 数量;
实际上,maxThreads 的大小比 CPU 核心数量要大得多。
因为处理请求的线程真正用于计算的时间可能很少,大多数时间可能在阻塞,如等待数据库返回数据、等待硬盘读写数据等。
因此,在某一时刻,只有少数的线程真正的在使用物理 CPU,大多数线程都在等待;
故线程数远大于物理核心数才是合理的。
换句话说,Tomcat 通过使用比 CPU 核心数量多得多的线程数,可以使 CPU 忙碌起来,大大提高 CPU 的利用率
minSpareThreads :线程池最小空闲线程数(多余的空闲线程都将杀死)。默认值为 25
线程数小于此数时,每次来任务都新建线程处理
maxSpareThreads :线程池最大空闲线程数
一旦创建的线程超过这个值,Tomcat 就会关闭不再需要的 socket 线程
maxIdLeTime:一个线程空闲多久算是一个空闲线程,单位:毫秒
connectionTimeout :网络连接超时。单位:毫秒。默认值为 60000ms(60秒)
设置为 0 表示永不超时,但这样设置有隐患的。通常设置为 30000 毫秒或使用默认值
disableUploadTimeout :禁用上传超时,主要用于大数据上传时,允许 Servlet 容器正在执行使用一个较长的连接超时值,以使 Servlet 有较长的时间来完成它的执行,默认值为 false
enableLookups :是否反查域名,取值为:true 或 false
若为 true,则可以通过调用 request.getRemoteHost() 进行 DNS 查询来得到远程客户端的实际主机名
若为 false,则不进行DNS查询,而是返回其 ip 地址
为了提高处理能力,应设置为 false
补充说明:
maxThreads 和 acceptCount 属性对 tomcat 能同时处理的请求数和请求响应时间有直接的影响。
无论 acceptCount 值为多少,maxThreads 直接决定了实际可同时处理的请求数。
而不管 maxThreads 如何,acceptCount 则决定了有多少请求可等待处理。
然而,不管是可立即处理请求还是需要放入等待区,都需要 tomcat 先接受该请求(即接受客户端的连接请求,建立socketchannel),那么 tomcat 同时可建立的连接数(maxConnections 属性值)也会影响可同时处理的请求数。
如何设置 acceptCount 、maxConnections、maxThreads 的值:
CPU 越不密集(或 IO 越密集),maxThreads 应该越大
maxConnections 的设置与 Tomcat 的运行模式有关
如果 tomcat 使用的是 BIO,那么 maxConnections 的值应该与 maxThreads 一致(默认值为 maxThreads)
如果 tomcat使用的是 NIO,maxConnections 值应该远大于 maxThreads(默认值为 10000)
Tomcat 能够接收的连接数 = maxThreads + acceptCount
acceptCount 的设置,与应用在连接过高情况下希望做出什么反应有关系
在线用户数、连接数、瞬时并发数、线程数的区别
Tomcat 的运行模式
BIO(阻塞式的 Socket 通信)模式
Tomcat8 以下版本,默认的 HTTP 实现是采用 BIO 模式,每个请求都需要创建一个线程处理
这种模式下的并发量受到线程数的限制,不大适合高并发,但技术成熟。
每个进程中的线程数受制于操作系统的内核参数设置:
NIO模式(非阻塞式的 Socket 通信)
Tomcat8 以上版本,默认使用的就是 NIO 模式,在性能上高于阻塞式的,每个请求也不需要创建一个线程进行处理,并发能力比前者高。
APR 模式(全称 Apache Portable Runtime)
是 Tomcat 生产环境运行的首选方式。但必须要安装 APR 和 Native,直接启动就支持 APR。
APR 是从操作系统级别解决异步 IO 问题。APR 的本质就是使用 JNI 技术调用操作系统底层的 IO 接口,所以需要提前安装所需要的依赖。
如果操作系统未安装 APR 或者 APR 路径未指到 Tomcat 默认可识别的路径,则 APR 模式无法启动,自动切换启动 NIO 模式。
注:APR 模式可以提升 Tomcat 对静态文件的处理性能,当然也可以采用动静分离。
JVM 调优(tomcat 可以使用的内存)
Tomcat 是运行在 JVM 上的,所以对 JVM 的调优也是非常有必要的
在 Java 中每开启一个线程需要耗用 1MB 的 JVM 内存空间用于作为线程栈之用
tomcat 默认可以使用的内存为128MB,在并发量较大的应用项目中,这点内存是不够的,需要修改 JVM 参数调优
Unix下,在文件{tomcat_home}/bin/catalina.sh的前面,增加如下设置:
JAVA_OPTS=‘-Xms【初始化内存大小】 -Xmx【可以使用的最大内存】’
需要把这个两个参数值调大。例如:JAVA_OPTS=‘-Xms256m -Xmx512m’
表示初始化内存为 256MB,可以使用的最大内存为 512MB
一台主机允许的连接数、线程数、内存大小、硬件性能和 CPU 数量,都会限制实际并发数
并发能力还与应用的逻辑密切相关,如果逻辑很复杂需要大量的计算,那并发能力势必会下降。
如果每个请求都含有很多的数据库操作(或其他中间件的连接),那么对于数据库的性能要求也是非常高的。
对于单台数据库服务器来说,允许客户端的连接数量是有限制的(数据库读写的并发能力)
建议当某个应用拥有 250 个以上并发的时候,应考虑应用服务器的集群
注:
参考: 并发量计算
几个概念:业务并发用户数、最大并发访问数、系统用户数、同时在线用户数
估算业务并发用户数的公式(测试人员一般只关心业务并发用户数)
C = nL / T
C^ = C + 3 × (C的平方根)
n 是 login session 的数量
T 是指考察的时间段长度
该公式的得出是假设用户的 login session 产生符合泊松分布而估算得到。
假设:OA 系统有1000用户,每天400个用户发访问,每个登录到退出平均时间2小时,在1天时间内用户只在8小时内使用该系统。
C = 400 × 2 / 8 = 100
C^ = 100 + 3 × (100的平方根) = 100 + 3 × 10 = 130
另外,如果知道平均每个用户发出的请求数 u,则系统吞吐量可以估算为 u × C
注意:
参考:系统吞吐量(TPS)、用户并发量、性能测试概念和公式
系统吞吐量的几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS)= 并发数 / 平均响应时间
(很多人经常会把并发数和 TPS 理解混淆)
一个系统吞吐量通常由 QPS(TPS)、并发数两个因素决定。
每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了
如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
系统响应时间,由 CPU 运算、IO、外部系统响应等等组成。
参考:tomcat高并发配置与优化