2023年亚太杯APMCM数学建模大赛数据分析题MySQL的使用
作者:mmseoamin日期:2023-12-13

2023年亚太杯APMCM数学建模大赛

以2022年C题全球变暖数据为例

数据分析:

  以2022年亚太杯数学建模C题为例,首先在navicat建数据库然后右键“表”,单击“导入向导”,选择对应的数据格式及字符集进行数据导入

2023年亚太杯APMCM数学建模大赛数据分析题MySQL的使用,在这里插入图片描述,第1张

  导入之后,我们可以双击刚刚导入的2022_apmcm_c_data表,查看一下数据情况。使用"ctrl"+"q"快捷键来新建SQL查询语言,结构化语言查询页面中会自动生成代码:select * from 2022_apmcm_c_data

2023年亚太杯APMCM数学建模大赛数据分析题MySQL的使用,在这里插入图片描述,第2张

  由于原数据条数太多,因此我们可以使用mysql中的limit函数简单查看表重所有字段的前100条数据情况。代码如下:

SELECT * FROM `2022_apmcm_c_data` limit 100;

  你如果要是计算机专业,不会mysql,那你赶紧找个厂子上班得了;你如果不是计算机专业,没学过mysql我不说什么,不是说轻视,因为这个东西根本不用想,然后还有星号星号博主把mysql说的多么高大上,我今天毫无保留的把mysql这点破玩意都讲给你们。

  mysql也好还是oracle数据库也好,它本身最常用最实用的功能就是提供数据存储增删改查的,你tm有的星号星号博主说mysql是机器学习软件,你把读者都当作星号星号是么?它就是个结构化查询语言,别误导读者行么?对于在自己电脑安装mysql的学生,完全没有必要使用建表语句去建表,为什么呢?因为你在导入表之后,双击打开表之后,在表的右侧就会自动生成建表语句,而且这个表在你导入之后就自动建好了。

2023年亚太杯APMCM数学建模大赛数据分析题MySQL的使用,在这里插入图片描述,第3张

  然后我再多说一嘴,你如果搭建数据库这个环境,完全没有必要在官网下载mysql,因为现在已经有了mysql环境集成程序包,就30MB,无须配置环境而且免费的,你如果安装官网mysql,不仅步骤繁琐,而且占空间太大。我就很好奇这事为啥没一个博主说呢?还是你们不会啊??我带**大学的拿研究生数学建模国奖的时候,你还在那“习莱克特”呢,你还支棱上了,还mysql数学建模,mysql根本做不了数学建模,严格意义上讲是pivot分析。

  猪鼻子插葱都在这装象是吧,好,上菜

  查看某张表的数据结构或所有列和列变量数据类型

DESCRIBE 2022_apmcm_c_data;
desc 2022_apmcm_c_data;

  这两个函数用哪个都行 无所谓的 结果都是一样的

  查看指定字段的表数据

select dt,AverageTemperature,Country from 2022_apmcm_c_data;

  常用聚合计算函数教学

  计算某一列(这里选用的是温度)数值变量之和

select sum(AverageTemperature) from 2022_apmcm_c_data;

  请得出所给表中数据所有城市名称汇总

  distinct用于返回不同的值(即去重功能)。在表中,一列通常包含许多重复值,该函数可以去重,得出去重后的结果。

select distinct City from 2022_apmcm_c_data;

  计算不同国家下的数据条数

  Group by是SQL语句中的一个重要操作,它可以将数据按照指定的列进行分组,并对每个分组进行聚合操作,如求和、计数、平均值等。

select Country,count(1) from 2022_apmcm_c_data group by Country;

  计算不同国家不同时间下的数据条数

select dt,Country,count(1) from 2022_apmcm_c_data group by dt,Country;

  计算不同国家不同时间下的温度之和

select dt,Country,sum(AverageTemperature) from 2022_apmcm_c_data 
group by dt,Country;

  计算不同国家不同时间下的温度之和并按照时间顺序进行排序

  在SQL中,ORDER BY是一种用于对结果集进行排序的子句。它通常紧跟在SELECT语句之后,可以根据一个或多个列对结果集进行排序。ORDER BY子句可以使用升序(默认)或降序来排序数据。

select dt,Country,sum(AverageTemperature) from 2022_apmcm_c_data 
group by dt,Country ORDER BY dt;

  请给出2000年以来不同地区国家的最高气温数据透视表

  where和having都可以实现字段条件的限制

  在SQL语句中,WHERE子句用于筛选出符合特定条件的数据。

  在SQL语句中,HAVING子句通常与GROUP BY子句一起使用来限制对分组后的结果集进行过滤。它和WHERE子句的区别在于:

  1. HAVING子句用于过滤分组后的结果集,而WHERE子句用于过滤原始数据集。

  2. HAVING子句只能在SELECT语句中使用,而WHERE子句可以在SELECT、UPDATE和DELETE语句中使用。

  3. HAVING子句中可以使用聚合函数,而WHERE子句不可以使用聚合函数。

  方法一 使用where和日期转化函数中的截取年功能YEAR函数

select dt,max(AverageTemperature) from 2022_apmcm_c_data 
where YEAR(dt) >=2000 GROUP BY dt ORDER BY dt;

  此方法虽然得到2000年以来不同地区国家的最高气温数据透视表,但是并未按照正确的时间顺序给出结果

  因此我们稍作改动 使用日期转化函数from_unixtime

  由于数据库中dt字段为char类型,因此需转换成日期类型

select dt,max(AverageTemperature) from 2022_apmcm_c_data 
where from_unixtime(dt,'%Y-%m-%d') GROUP BY dt having
 YEAR(dt) >=2000 ORDER BY dt;
select dt,max(AverageTemperature) from 2022_apmcm_c_data 
where from_unixtime(CONVERT(dt,date),'%Y%m%d') GROUP BY 
dt ORDER BY dt;
select dt,max(AverageTemperature) from 2022_apmcm_c_data
 where from_unixtime(cast(dt as date),'%Y%m%d') GROUP BY dt ORDER BY dt;
select dt,max(AverageTemperature) from 2022_apmcm_c_data 
where DATE_FORMAT(CONVERT(dt,date),'%Y%m%d') GROUP BY dt ORDER BY dt;
select dt,max(AverageTemperature) from 2022_apmcm_c_data 
where DATE_FORMAT(STR_TO_DATE(dt,'%Y-%m-%d'),'%Y%m%d') 
GROUP BY dt ORDER BY dt;

  数据格式检验

select DATE_FORMAT(STR_TO_DATE(dt,'%Y-%m-%d'),'%Y%m%d') from 2022_apmcm_c_data  where dt is not null ORDER BY dt;

  我虽然列出了这么多方法 但是结果不正确 为什么?因为导入数据时,数据格式不统一,这就造成了后续数据分析中较大的数据偏差

  进行数据处理之后 我们再次导入数据

  新导入的数据表为2022_apmcm_c_data_copy1

select dt,max(AverageTemperature) from 2022_apmcm_c_data_copy1 
where from_unixtime(CONVERT(dt,date),'%Y%m%d') GROUP BY dt ORDER BY dt;

  查完之后还是不正确,为什么呢?因为你导入数据的类型不对 温度这是数值数据

  我们使用限定条件检查一下

select max(AverageTemperature) from 2022_apmcm_c_data_copy1 
where dt='2013-01-01';

  接着我们修改一下数据类型 因为varchar类型无法进行数值比较

  这里可直接修改表结构或使用sql语言来改变表结构

  注意 不能使用int类型,因为原温度数据带有小数点,应使用double类型

  之后下一节我们会专门讲解alter的用法

ALTER TABLE 2022_apmcm_c_data_copy1 MODIFY AverageTemperature double;

  接着我们再次检查一下

select max(AverageTemperature) from 2022_apmcm_c_data_copy1
 where dt='2013-01-01';

  数据正常之后我们现在再来实现一下2000年以来不同地区国家的最高气温数据透视表功能

  方法一

select dt,max(AverageTemperature) from 2022_apmcm_c_data_copy1 
where from_unixtime(dt,'%Y-%m-%d') GROUP BY dt having YEAR(dt)
 >=2000 ORDER BY dt;

  方法二

select dt,max(AverageTemperature) from 2022_apmcm_c_data_copy1 
where DATE_FORMAT(STR_TO_DATE(dt,'%Y-%m-%d'),'%Y%m%d') >='20000101'
 GROUP BY dt ORDER BY dt;

  这里方法太多了 我上述给出我最常用的两种

  上述我们使用了日期函数,现在我这边教学一下字符串函数和聚合函数的简单综合运用

  请计算2010年以来不同国家的平均地理位置(平均经纬度)

  在mysql中,replace函数与SELECT语句配合使用时,可以用于进行字符串替换操作,同时也支持多个字符串同时被替换,语法为“SELECT REPLACE(数据库表的列名,需要替换的字符串,替换成的字符串)”。

  在MySQL中,AVG函数用于计算某个字段的平均值。平均值是通过将数值求和然后除以总数得到的。

  我们循序渐进的来教学

  这里不使用update的原因就是不要改变原数据,因为改变之后或许还会用到经纬度的字符。

  但是如果你有备份不嫌麻烦可以使用update,但更新有风险,检验需谨慎

  sql嵌套子查询和函数的综合运用

  1.先替换掉字段数据中的N和E字符

select dt as 日期,Country as 国家,replace(Latitude,'N','') as 纬度,
replace(Longitude,'E','') as 经度 from 2022_apmcm_c_data_copy1 where 
from_unixtime(dt,'%Y-%m-%d') GROUP BY dt,Country,Latitude,Longitude 
having YEAR(dt) >=2000 ORDER BY dt;

  2.然后再替换掉数据中的S和W字符

select a.日期,a.国家,replace(a.纬度,'S','') as 纬度,replace(a.经度,'W','') as 经度 
from(
select dt as 日期,Country as 国家,replace(Latitude,'N','') as 纬
度,replace(Longitude,'E','') as 经度 from 2022_apmcm_c_data_copy1 where 
from_unixtime(dt,'%Y-%m-%d') GROUP BY dt,Country,Latitude,Longitude 
having YEAR(dt) >=2000 ORDER BY dt)a;

  3.1使用convert函数类型转化及均值函数计算

  注意 这里转不了double类型 数据类型不懂的 看一下float double 和decimal的区别

  float类型表示单精度浮点数值,double类型表示双精度浮点数值,float和double都是浮点型,而decimal是定点型;

  MySQL 浮点型和定点型可以用类型名称后加(M,D)来表示,M表示该值的总共长度,D表示小数点后面的长度,M和D又称为精度和标度,如float(5,2)的 可显示为999.99,MySQL保存值时会进行四舍五入,如果插入999.009,则结果为999.01。

select b.日期,b.国家,AVG(CONVERT(b.纬度,DECIMAL(10,2))),
AVG(CONVERT(b.经度,DECIMAL(10,2))) from(
select a.日期,a.国家,replace(a.纬度,'S','') as 纬度,
replace(a.经度,'W','') as 经度 from(
select dt as 日期,Country as 国家,replace(Latitude,'N','') 
as 纬度,replace(Longitude,'E','') as 经度 from 2022_apmcm_c_data_copy1
 where from_unixtime(dt,'%Y-%m-%d') GROUP BY 
 dt,Country,Latitude,Longitude having YEAR(dt) >=2000 
 ORDER BY dt)a)b group by b.日期,b.国家;

  3.2也可以使用cast函数类型转化及均值函数计算

  cast功能测试

select CAST(AverageTemperature as decimal(8,2)) from 2022_apmcm_c_data_copy1;
select b.日期,b.国家,AVG(CAST(b.纬度 as decimal(9,2)))
,AVG(CAST(b.经度 as decimal(9,2))) from(
select a.日期,a.国家,replace(a.纬度,'S','') 
as 纬度,replace(a.经度,'W','') as 经度 from(
select dt as 日期,Country as 国家,replace(Latitude,'N','')
 as 纬度,replace(Longitude,'E','') as 经度 from 
 2022_apmcm_c_data_copy1 where from_unixtime(dt,'%Y-%m-%d')
 GROUP BY dt,Country,Latitude,Longitude having YEAR(dt) >=2000 
 ORDER BY dt)a)b group by b.日期,b.国家;

下节课我们详细讲,MySQL中的where用法