有监督:
根据生成的一组参数进行预测分类任务
无监督:
图片来源:https://scikit-learn.org.cn/view/108.html
将数据看做空间的中的点的时候,评价远近可以用欧式距离或者是余弦距离
计算过程如下:
c o s θ = a ⋅ b ∣ ∣ a ∣ ∣ 2 ∣ ∣ b ∣ ∣ 2 cos\theta = \frac{a \cdot b}{||a||_2||b||_2} cosθ=∣∣a∣∣2∣∣b∣∣2a⋅b
c o s θ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 × x 2 2 + y 2 2 cos\theta = \frac{x_1x_2 + y_1y_2}{\sqrt{x_1^2 + y_1^2} \times \sqrt{x_2^2 + y_2^2}} cosθ=x12+y12 ×x22+y22 x1x2+y1y2
基本思路:
算法步骤:
聚类的过程:
∑ i = 0 n min μ j ∈ C ( ∣ ∣ x i − μ j ∣ ∣ 2 ) \sum\limits_{i=0}^{n}\underset{\mu_j \in C}\min(||x_i - \mu_j||^2) i=0∑nμj∈Cmin(∣∣xi−μj∣∣2)
其中 μ j = 1 ∣ C j ∣ ∑ x ∈ C j x \mu_j = \frac{1}{|C_j|}\sum\limits_{x \in C_j}x μj=∣Cj∣1x∈Cj∑x 是簇的均值向量,或者说是质心。
其中 ∣ ∣ x i − μ j ∣ ∣ 2 ||x_i - \mu_j||^2 ∣∣xi−μj∣∣2代表每个样本点到均值点的距离(其实也是范数)。
愿君前程似锦,未来可期去💯,感谢您的阅读,如果对您有用希望您留下宝贵的点赞和收藏
本文章为本人学习笔记,如有请侵权联系,本人会立即删除侵权文章。可以一起学习共同进步谢谢,如有请侵权联系,本人会立即删除侵权文章。