提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论
Django和Flask都是python的服务框架,Flask相较于Django的优势是更加轻量级,因此尝试用Flask构建API服务,Flask快速部署深度学习模型再打包exe与深度学习模型直接打包exe相比,前者模型只需要加载一次权重就可以一直使用,而后者每一次预测都需要重新加载一次模型权重,严重浪费了时间和资源。
【打包exe参考】
【环境安装参考】
# 安装flask pip install flask # 安装pytorch环境 pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
将以下代码段保存在名为app.py的文件中,并运行代码。
from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return 'Hello World!' if __name__ == "__main__": app.run()
在web浏览器中访问http://127.0.0.1:5000/时,查看到Hello World的文本!
博主以人脸检测之Retinaface算法为例讲解代码:【retinaface-pytorch代码】。有兴趣的朋友可以看看完整的代码,这里博主只保留了与预测相关的代码,并做了部分修改。
app.py中与Web服务相关的部分,博主设置了俩个路由路径:
# 初始化模型 默认mobilenetX1.00 Model = retinaface("mobilenetX1.00") from flask import Flask, request app = Flask(__name__) # /setmodel用于修改模型 @app.route('/setmodel', methods=['POST']) def initialization(): if request.method == 'POST': model_mold = request.form Model.setModel(model_mold["model_mold"]) return "initialization " + model_mold["model_mold"] + " finish" # /predict用于预测 @app.route('/predict', methods=['POST']) def predict(): if request.method == 'POST': file = request.form keys_Points = Model.detect_image(file['mode'], file['path']) return keys_Points if __name__ == '__main__': app.run()
app.py中与Retinaface算法相关的部分,用retinaface类进一步封装了Retinaface模型,设置了俩个方法,detect_image方法对于flask中的predict,setModel方法对应flask中的initialization。
class retinaface(object): def __init__(self, model_mold): if model_mold == "mobilenetX1.00": model_path= r"model_save/mobilenetX1.00.pth" elif model_mold == "mobilenetX0.75": model_path = r"model_save/mobilenetX0.75.pth" elif model_mold == "mobilenetX0.50": model_path = r"model_save/mobilenetX0.50.pth" elif model_mold == "mobilenetX0.25": model_path = r"model_save/mobilenetX0.25.pth" else: model_path = r"model_save/resnet50.pth" self.retinaface = Retinaface(model_path=model_path, backbone=model_mold) def detect_image(self, mode, path): import os if mode == "predict" and (path.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff'))): while True: image = cv2.imread(path) if image is None: print('Open Error! Try again!') continue else: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) r_image_points = self.retinaface.detect_image(image).tolist() elif mode == "dir_predict" and os.path.isdir(path): import os import time r_image_points = [] img_names = os.listdir(path) for img_name in img_names: t = time.time() if img_name.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')): image_path = os.path.join(path, img_name) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) r_image_points.append(self.retinaface.detect_image(image).tolist()) else: return [] return r_image_points def setModel(self,model_mold): if model_mold == "mobilenetX1.00": model_path= r"model_save/mobilenetX1.00.pth" elif model_mold == "mobilenetX0.75": model_path = r"model_save/mobilenetX0.75.pth" elif model_mold == "mobilenetX0.50": model_path = r"model_save/mobilenetX0.50.pth" elif model_mold == "mobilenetX0.25": model_path = r"model_save/mobilenetX0.25.pth" else: model_path = r"model_save/resnet50.pth" self.retinaface = Retinaface(model_path=model_path, backbone=model_mold)
test.py用于HTTP Post请求过程模拟。
"http://localhost:5000/setmodel"加载指定backbone,假设不指定backbone,默认加载mobilenetX1.00。
import requests resp = requests.post("http://localhost:5000/setmodel", data={'model_mold': 'mobilenetX0.25'}) print(resp.text)
"http://localhost:5000/predict"指定模式mode(单张图片或批量图片)和图片路径path。
import requests resp = requests.post("http://localhost:5000/predict", data={'mode': 'dir_predict', 'path': 'img'}) print(resp.text)
启动服务后,post发送http请求,默认backbone加载mobilenetX1.00,path指定批量图片的文件夹地址,dir_predict(批量预测图片)mode方式预测所以图片的五个关键点(双眼、鼻子和俩边嘴角)xy像素坐标,源码其实还有框的坐标和高宽,博主不需要就去掉了。
多张图片,每张图片数据保存在一个list里–5个关键点xy像素坐标共10个值。
【代码上传】,只保留预测相关文件,功能如下图所示,不做过多讲解,主要讲解部署和使用。
零基础先参考python程序打包成可执行文件【进阶篇】
# 安装PyInstaller包,5.4.0版本 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Pyinstaller==5.4.0 # 生成spec文件 pyi-makespec -w app.py
安装了5.7.0及以后版本的Pyinstaller,打包部署启动的时候会报如下错误:
解决方式:pip指定5.4.0版本的安装包安装。
修改app.spec内容:由于打包的主文件是app.py,因此生成的spec文件名称为app.spec,俩者在同一个目录下。
['app.py', "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/retinaface.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/nets/layers.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/nets/mobilenet.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/nets/resnet.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/nets/retinaface.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/nets/retinaface_training.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/anchors.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/callbacks.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/config.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/dataloader.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/utils.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/utils_bbox.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/utils_fit.py", "E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/utils/utils_map.py", ], pathex=["E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface"], binaries=[ ("E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/model_save/mobilenetX0.25.pth", "model_save"), ("E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/model_save/mobilenetX0.50.pth", "model_save"), ("E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/model_save/mobilenetX0.75.pth", "model_save"), ("E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/model_save/mobilenetX1.00.pth", "model_save"), ("E:/deep-learning-for-image-processing-master/face_detector/flask-retinaface/model_save/resnet50.pth", "model_save"), ],
# 运行spec文件进行打包 pyinstaller app.spec
完成打包后在pathex指定文件夹下产生build(可以删除)和dist文件夹,所需的可执行文件在dist目录内
双击运行exe,运行test.py进行Post请求,测试结果如下图:
尽可能简单、详细的介绍Flask快速部署深度学习模型的过程。