题目链接:https://leetcode.cn/problems/the-masseuse-lcci/
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
注意:本题相对原题稍作改动
示例 1:
输入: [1,2,3,1]
输出: 4
解释:选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:
输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。
思路
状态表达: 我们定义两个状态数组,f 和 g:
状态转移方程: 对于 f[i]:
对于 g[i]:
初始化: 由于这道题的初始化比较简单,无需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0 即可。
填表顺序: 根据状态转移方程,从左往右,两个表一起填。
返回值: 根据状态表达,我们应该返回 max(f[n - 1], g[n - 1])。
代码
class Solution { public: int massage(vector& nums) { int n = nums.size(); if(n==0) return 0; vector f(n); vector g(n); f[0] = nums[0]; for (int i = 1; i < n; ++i) { f[i] = g[i - 1] + nums[i]; g[i] = max(f[i - 1], g[i - 1]); } return max(g[n - 1], f[n - 1]); } };
题目链接:https://leetcode.cn/problems/house-robber-ii/
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2] 输出:3 解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1] 输出:4 解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。 偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [1,2,3] 输出:3
提示:
思路
将环形的打家劫舍问题转化为两个单排的问题。具体来说,你分别考虑两种情况:
a. 偷第一个房屋的情况: 在这种情况下,由于首尾相连,你不能偷最后一个房子,因此偷窃范围是 [0, n - 2]。你可以使用之前解决「打家劫舍I」的动态规划方法来找到在这个范围内的最大金额,得到的结果是 x。
b. 不偷第一个房屋的情况: 在这种情况下,你可以偷最后一个房子,因此偷窃范围是 [1, n - 1]。同样,使用相同的动态规划方法得到在这个范围内的最大金额,得到的结果是 y。
最终的答案就是这两种情况下的最大值,即 max(x, y)。
代码
class Solution { public: int rob(vector& nums) { int n=nums.size(); return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1)); } int rob1(vector & nums,int start,int end){ if(start>end) return 0; int n=nums.size(); vector f(n); vector g(n); f[start]=nums[start]; for(int i=start+1;i<=end;i++){ f[i]=g[i-1]+nums[i]; g[i]=max(g[i-1],f[i-1]); } return max(g[end],f[end]); } };
题目链接:https://leetcode.cn/problems/delete-and-earn/
给你一个整数数组 nums ,你可以对它进行一些操作。
每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1 和 nums[i] + 1 的元素。
开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。
示例 1:
输入:nums = [3,4,2] 输出:6 解释: 删除 4 获得 4 个点数,因此 3 也被删除。 之后,删除 2 获得 2 个点数。总共获得 6 个点数。
示例 2:
输入:nums = [2,2,3,3,3,4] 输出:9 解释: 删除 3 获得 3 个点数,接着要删除两个 2 和 4 。 之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。 总共获得 9 个点数。
提示:
思路
其实这道题可以看作是「打家劫舍I」问题的变体。通过将每个数字的出现的和记录在 hash 数组中,然后在 hash 数组上应用「打家劫舍」的思路,你能够有效地解决这个问题。
具体来说,可以创建一个大小为 10001(根据题目的数据范围)的 hash 数组,将 nums 数组中的每个元素 x 累加到 hash 数组下标为 x 的位置上。然后就可以使用「打家劫舍I」问题的动态规划方法,从 hash 数组中找到不相邻的元素的最大和。
代码
class Solution { public: int deleteAndEarn(vector& nums) { int hash[10001] = {0}; for(int& x:nums) hash[x]+=x; vector f(10001); vector g(10001); for(int i=1;i<10001;++i){ f[i]=g[i-1]+hash[i]; g[i]=max(g[i-1],f[i-1]); } return max(f[10000],g[10000]); } };
题目链接:https://leetcode.cn/problems/JEj789/
假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。
例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。
请计算出粉刷完所有房子最少的花费成本。
示例 1:
输入: costs = [[17,2,17],[16,16,5],[14,3,19]] 输出: 10 解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。 最少花费: 2 + 5 + 3 = 10。
示例 2:
输入: costs = [[7,6,2]] 输出: 2
提示:
思路
状态表表示:
状态转移方程:
分析三个状态的转移方程,以 dp[i][0] 为例:
于是状态方程为:
dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0]; dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1]; dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
初始化:
填表顺序:
返回值:
代码
class Solution { public: int minCost(vector>& costs) { int n=costs.size(); vector > dp(n+1,vector (3)); for(int i=1;i<=n;i++){ dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0]; dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1]; dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2]; } return min(dp[n][0],min(dp[n][1],dp[n][2])); } };
上一篇:【数据结构】数组、双链表代码实现