文章目录
近期笔者在做Text2SQL的研究,于是调研了下Chat2DB,基于车辆订单业务做了一些SQL生成验证,有了一点心得,和大家分享一下.:
基于车辆订单业务,模拟新建了以下四张表,并添加了一些测试数据
1. organization:组织表,包含组织id,组织名称,组织分类等3个字段;
3. vehicle:车辆信息表,包含组织id,车辆id,车牌号码,使用年限等字段;
4. refueling_order:车辆加油订单表,包含组织id,车辆id,车牌号码,加油时间,加油费用等字段
5. **driven_distance**:车辆行驶里程表,包含组织id,车辆id,车牌号码,年份,行驶里程等字段

//通过docker,安装运行最新版本的chat2db容器 docker run --name=chat2db -ti -p 10824:10824 -v ~/.chat2db-docker:/root/.chat2db chat2db/chat2db:latest








从GIT上下载并剖析源码,最核心的Text-2-SQL生成代码部分:
/**
* SQL转换模型
*
* @param queryRequest
* @param headers
* @return
* @throws IOException
*/
@GetMapping("/chat")
@CrossOrigin
public SseEmitter completions(ChatQueryRequest queryRequest, @RequestHeader Map headers)
throws IOException {
//默认30秒超时,设置为0L则永不超时
SseEmitter sseEmitter = new SseEmitter(CHAT_TIMEOUT);
String uid = headers.get("uid");
if (StrUtil.isBlank(uid)) {
throw new ParamBusinessException("uid");
}
//提示消息不得为空
if (StringUtils.isBlank(queryRequest.getMessage())) {
throw new ParamBusinessException("message");
}
return distributeAISql(queryRequest, sseEmitter, uid);
}
/**
* distribute with different AI
*
* @return
*/
public SseEmitter distributeAISql(ChatQueryRequest queryRequest, SseEmitter sseEmitter, String uid) throws IOException {
ConfigService configService = ApplicationContextUtil.getBean(ConfigService.class);
Config config = configService.find(RestAIClient.AI_SQL_SOURCE).getData();
String aiSqlSource = AiSqlSourceEnum.CHAT2DBAI.getCode();
if (Objects.nonNull(config)) {
aiSqlSource = config.getContent();
}
AiSqlSourceEnum aiSqlSourceEnum = AiSqlSourceEnum.getByName(aiSqlSource);
if (Objects.isNull(aiSqlSourceEnum)) {
aiSqlSourceEnum = AiSqlSourceEnum.OPENAI;
}
uid = aiSqlSourceEnum.getCode() + uid;
switch (Objects.requireNonNull(aiSqlSourceEnum)) {
case OPENAI :
return chatWithOpenAi(queryRequest, sseEmitter, uid);
case CHAT2DBAI:
return chatWithChat2dbAi(queryRequest, sseEmitter, uid);
case RESTAI :
case FASTCHATAI:
return chatWithFastChatAi(queryRequest, sseEmitter, uid);
case AZUREAI :
return chatWithAzureAi(queryRequest, sseEmitter, uid);
case CLAUDEAI:
return chatWithClaudeAi(queryRequest, sseEmitter, uid);
case WENXINAI:
return chatWithWenxinAi(queryRequest, sseEmitter, uid);
case BAICHUANAI:
return chatWithBaichuanAi(queryRequest, sseEmitter, uid);
case TONGYIQIANWENAI:
return chatWithTongyiChatAi(queryRequest, sseEmitter, uid);
case ZHIPUAI:
return chatWithZhipuChatAi(queryRequest, sseEmitter, uid);
}
return chatWithOpenAi(queryRequest, sseEmitter, uid);
} /**
* 使用OPENAI SQL接口
*
* @param queryRequest
* @param sseEmitter
* @param uid
* @return
* @throws IOException
*/
private SseEmitter chatWithOpenAi(ChatQueryRequest queryRequest, SseEmitter sseEmitter, String uid)
throws IOException {
String prompt = buildPrompt(queryRequest);
if (prompt.length() / TOKEN_CONVERT_CHAR_LENGTH > MAX_PROMPT_LENGTH) {
log.error("提示语超出最大长度:{},输入长度:{}, 请重新输入", MAX_PROMPT_LENGTH,
prompt.length() / TOKEN_CONVERT_CHAR_LENGTH);
throw new ParamBusinessException();
}
List messages = new ArrayList<>();
prompt = prompt.replaceAll("#", "");
log.info(prompt);
Message currentMessage = Message.builder().content(prompt).role(Message.Role.USER).build();
messages.add(currentMessage);
buildSseEmitter(sseEmitter, uid);
OpenAIEventSourceListener openAIEventSourceListener = new OpenAIEventSourceListener(sseEmitter);
OpenAIClient.getInstance().streamChatCompletion(messages, openAIEventSourceListener);
LocalCache.CACHE.put(uid, JSONUtil.toJsonStr(messages), LocalCache.TIMEOUT);
return sseEmitter;
} 
请根据以下table properties和SQL input将自然语言转换成SQL查询. MYSQL SQL tables, with their properties: ["CREATE TABLE `driven_distance` (\n `id` bigint(20) NOT NULL AUTO_INCREMENT,\n `organization_id` bigint(20) DEFAULT NULL,\n `vehicle_id` bigint(20) DEFAULT NULL,\n `license_plate` varchar(255) DEFAULT NULL,\n 。。。"] SQL input: 2023年,每个季度的加油金额各是多少元?
经过测试,通常的业务查询基本上都能准确生成,另外通过上述一路使用和分析,笔者发现Text2SQL的技术几大要点
上一篇:什么是栈,如何实现?