灰色HMMP-GM11改进模型,通过引入隐马尔可夫模型(HMM)来对原始数据进行状态分析,然后利用GM(1,1)模型进行预测,从而提高了预测精度。并采用变量筛选MIV方法对变量进行筛选,对每个指标的重要性进行分析。内附具体流程步骤
%----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1', ps_output); T_sim2 = mapminmax('reverse', t_sim2', ps_output); %% V. 评价指标 %% 均方根误差 RMSE error1 = sqrt(sum((T_sim1 - T_train).^2)./M); error2 = sqrt(sum((T_test - T_sim2).^2)./N); %% 决定系数 R1 = rsquare(T_train,T_sim1); R2 = rsquare(T_test,T_sim2); MAE1 = mean(abs(T_train - T_sim1)); MAE2 = mean(abs(T_test - T_sim2)); %% 平均绝对百分比误差MAPE MAPE1 = mean(abs((T_train - T_sim1)./T_train)); MAPE2 = mean(abs((T_test - T_sim2)./T_test)); %-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[1] https://blog.csdn.net/kjm13182345320/article/details/124693040?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/124864369?spm=1001.2014.3001.5502
上一篇:8.云原生存储之Ceph集群