这篇文章将跳过基础的深度学习环境的搭建,如果没有完成的可以看我的这篇博客:超详细||深度学习环境搭建记录cuda+anaconda+pytorch+pycharm-CSDN博客
1. 在github上下载源码:
ONNX > OpenVINO > CoreML > TFLite">GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
2. 安装ultralytics(YOLOv8改名为ultralytics)
这里有两种方式安装ultralytics
pip install ultralytics
cd ultralytics pip install -r requirements.txt
3. 安装wandb
pip install wandb
登录自己的wandb账号
wandb login
1. 构建数据集
数据集要严格按照下面的目录格式,image的格式为jpg,label的格式为txt,对应的image和label的名字要一致
Dataset └─images └─train └─val └─labels └─train └─val
2. 创建一个dataset.yaml文件
更换自己的image train和image val的地址,labels地址不用,它会自动索引
将classes改为自己的类别,从0开始
path: ../datasets/coco128 # dataset root dir train: images/train2017 # train images (relative to 'path') 128 images val: images/train2017 # val images (relative to 'path') 128 images test: # test images (optional) # Classes names: 0: person 1: bicycle 2: car 3: motorcycle 4: airplane 5: bus 6: train 7: truck 8: boat
3. 新建一个train.py,修改相关参数,运行即可开始训练
from ultralytics import YOLO if __name__ == '__main__': # Load a model model = YOLO(r'\ultralytics\detection\yolov8n\yolov8n.yaml') # 不使用预训练权重训练 # model = YOLO(r'yolov8p.yaml').load("yolov8n.pt") # 使用预训练权重训练 # Trainparameters ---------------------------------------------------------------------------------------------- model.train( data=r'\ultralytics\detection\dataset\appledata.yaml', epochs= 30 , # (int) number of epochs to train for patience= 50 , # (int) epochs to wait for no observable improvement for early stopping of training batch= 8 , # (int) number of images per batch (-1 for AutoBatch) imgsz= 320 , # (int) size of input images as integer or w,h save= True , # (bool) save train checkpoints and predict results save_period= -1, # (int) Save checkpoint every x epochs (disabled if < 1) cache= False , # (bool) True/ram, disk or False. Use cache for data loading device= 0 , # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers= 16 , # (int) number of worker threads for data loading (per RANK if DDP) project= 'result', # (str, optional) project name name= 'yolov8n' ,# (str, optional) experiment name, results saved to 'project/name' directory exist_ok= False , # (bool) whether to overwrite existing experiment pretrained= False , # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer= 'SGD', # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose= True ,# (bool) whether to print verbose output seed= 0 , # (int) random seed for reproducibility deterministic= True , # (bool) whether to enable deterministic mode single_cls= True , # (bool) train multi-class data as single-class rect= False ,# (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr= False , # (bool) use cosine learning rate scheduler close_mosaic= 0, # (int) disable mosaic augmentation for final epochs resume= False , # (bool) resume training from last checkpoint amp= False, # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction= 1.0 , # (float) dataset fraction to train on (default is 1.0, all images in train set) profile= False, # (bool) profile ONNX and TensorRT speeds during training for loggers # Segmentation overlap_mask= True , # (bool) masks should overlap during training (segment train only) mask_ratio= 4, # (int) mask downsample ratio (segment train only) # Classification dropout= 0.0, # (float) use dropout regularization (classify train only) # Hyperparameters ---------------------------------------------------------------------------------------------- lr0=0.01, # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf=0.01, # (float) final learning rate (lr0 * lrf) momentum=0.937, # (float) SGD momentum/Adam beta1 weight_decay=0.0005, # (float) optimizer weight decay 5e-4 warmup_epochs=3.0, # (float) warmup epochs (fractions ok) warmup_momentum=0.8, # (float) warmup initial momentum warmup_bias_lr=0.1, # (float) warmup initial bias lr box=7.5, # (float) box loss gain cls=0.5, # (float) cls loss gain (scale with pixels) dfl=1.5, # (float) dfl loss gain pose=12.0, # (float) pose loss gain kobj=1.0, # (float) keypoint obj loss gain label_smoothing=0.0, # (float) label smoothing (fraction) nbs=64, # (int) nominal batch size hsv_h=0.015, # (float) image HSV-Hue augmentation (fraction) hsv_s=0.7, # (float) image HSV-Saturation augmentation (fraction) hsv_v=0.4, # (float) image HSV-Value augmentation (fraction) degrees=0.0, # (float) image rotation (+/- deg) translate=0.1, # (float) image translation (+/- fraction) scale=0.5, # (float) image scale (+/- gain) shear=0.0, # (float) image shear (+/- deg) perspective=0.0, # (float) image perspective (+/- fraction), range 0-0.001 flipud=0.0, # (float) image flip up-down (probability) fliplr=0.5, # (float) image flip left-right (probability) mosaic=1.0, # (float) image mosaic (probability) mixup=0.0, # (float) image mixup (probability) copy_paste=0.0, # (float) segment copy-paste (probability) )
1. 新建一个test.py, 这个可以打印网路信息,参数量以及FLOPs,还有每一层网络的信息
from ultralytics import YOLO if __name__ == '__main__': # Load a model model = YOLO(r'\ultralytics\detection\yolov8n\yolov8n.yaml') # build a new model from YAML model.info()
2. 新建一个val.py,这个可以打印模型在验证集上的结果,如mAP,推理速度等
from ultralytics import YOLO if __name__ == '__main__': # Load a model model = YOLO(r'\ultralytics\detection\yolov8n\result\yolov8n4\weights\best.pt') # build a new model from YAML # Validate the model model.val( val=True, # (bool) validate/test during training data=r'\ultralytics\detection\dataset\appledata.yaml', split='val', # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' batch=1, # 测试速度时一般设置为 1 ,设置越大速度越快。 (int) number of images per batch (-1 for AutoBatch) imgsz=320, # (int) size of input images as integer or w,h device=0, # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers=8, # (int) number of worker threads for data loading (per RANK if DDP) save_json=False, # (bool) save results to JSON file save_hybrid=False, # (bool) save hybrid version of labels (labels + additional predictions) conf=0.001, # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou=0.7, # (float) intersection over union (IoU) threshold for NMS project='val', # (str, optional) project name name='', # (str, optional) experiment name, results saved to 'project/name' directory max_det=300, # (int) maximum number of detections per image half=True, # (bool) use half precision (FP16) dnn=False, # (bool) use OpenCV DNN for ONNX inference plots=True, # (bool) save plots during train/val )
3. 新建一个predict.py,这个可以根据训练好的权重文件进行推理,权重文件格式支持pt,onnx等,支持图片,视频,摄像头等进行推理
from ultralytics import YOLO if __name__ == '__main__': # Load a model model = YOLO(r'\deploy\yolov8n.pt') # pretrained YOLOv8n model model.predict( source=r'\deploy\output_video.mp4', save=False, # save predict results imgsz=320, # (int) size of input images as integer or w,h conf=0.25, # object confidence threshold for detection (default 0.25 predict, 0.001 val) iou=0.7, # # intersection over union (IoU) threshold for NMS show=True, # show results if possible project='', # (str, optional) project name name='', # (str, optional) experiment name, results saved to 'project/name' directory save_txt=False, # save results as .txt file save_conf=True, # save results with confidence scores save_crop=False, # save cropped images with results show_labels=True, # show object labels in plots show_conf=True, # show object confidence scores in plots vid_stride=1, # video frame-rate stride line_width=1, # bounding box thickness (pixels) visualize=False, # visualize model features augment=False, # apply image augmentation to prediction sources agnostic_nms=False, # class-agnostic NMS retina_masks=False, # use high-resolution segmentation masks boxes=True, # Show boxes in segmentation predictions )
1. 新建一个export.py,将pt文件转化为onnx文件
from ultralytics import YOLO # Load a model model = YOLO('/ultralytics/weight file/yolov8n.pt') # load a custom trained model # Export the model model.export(format='onnx')
2. 将onnx文件添加到之前提到的predict.py中,进行推理。
3. 如果想在推理的视频中添加FPS信息,请把ultralytics/engine/predictor.py替换为下面的代码。
# Ultralytics YOLO 🚀, AGPL-3.0 license """ Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ yolo mode=predict model=yolov8n.pt source=0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream Usage - formats: $ yolo mode=predict model=yolov8n.pt # PyTorch yolov8n.torchscript # TorchScript yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True yolov8n_openvino_model # OpenVINO yolov8n.engine # TensorRT yolov8n.mlmodel # CoreML (macOS-only) yolov8n_saved_model # TensorFlow SavedModel yolov8n.pb # TensorFlow GraphDef yolov8n.tflite # TensorFlow Lite yolov8n_edgetpu.tflite # TensorFlow Edge TPU yolov8n_paddle_model # PaddlePaddle """ import platform from pathlib import Path import cv2 import numpy as np import torch from ultralytics.cfg import get_cfg from ultralytics.data import load_inference_source from ultralytics.data.augment import LetterBox, classify_transforms from ultralytics.nn.autobackend import AutoBackend from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, SETTINGS, WINDOWS, callbacks, colorstr, ops from ultralytics.utils.checks import check_imgsz, check_imshow from ultralytics.utils.files import increment_path from ultralytics.utils.torch_utils import select_device, smart_inference_mode STREAM_WARNING = """ WARNING ⚠️ stream/video/webcam/dir predict source will accumulate results in RAM unless `stream=True` is passed, causing potential out-of-memory errors for large sources or long-running streams/videos. Usage: results = model(source=..., stream=True) # generator of Results objects for r in results: boxes = r.boxes # Boxes object for bbox outputs masks = r.masks # Masks object for segment masks outputs probs = r.probs # Class probabilities for classification outputs """ class BasePredictor: """ BasePredictor A base class for creating predictors. Attributes: args (SimpleNamespace): Configuration for the predictor. save_dir (Path): Directory to save results. done_warmup (bool): Whether the predictor has finished setup. model (nn.Module): Model used for prediction. data (dict): Data configuration. device (torch.device): Device used for prediction. dataset (Dataset): Dataset used for prediction. vid_path (str): Path to video file. vid_writer (cv2.VideoWriter): Video writer for saving video output. data_path (str): Path to data. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the BasePredictor class. Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None. """ self.args = get_cfg(cfg, overrides) self.save_dir = self.get_save_dir() if self.args.conf is None: self.args.conf = 0.25 # default conf=0.25 self.done_warmup = False if self.args.show: self.args.show = check_imshow(warn=True) # Usable if setup is done self.model = None self.data = self.args.data # data_dict self.imgsz = None self.device = None self.dataset = None self.vid_path, self.vid_writer = None, None self.plotted_img = None self.data_path = None self.source_type = None self.batch = None self.results = None self.transforms = None self.callbacks = _callbacks or callbacks.get_default_callbacks() self.txt_path = None callbacks.add_integration_callbacks(self) def get_save_dir(self): project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task name = self.args.name or f'{self.args.mode}' return increment_path(Path(project) / name, exist_ok=self.args.exist_ok) def preprocess(self, im): """Prepares input image before inference. Args: im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list. """ not_tensor = not isinstance(im, torch.Tensor) if not_tensor: im = np.stack(self.pre_transform(im)) im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im) img = im.to(self.device) img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 if not_tensor: img /= 255 # 0 - 255 to 0.0 - 1.0 return img def inference(self, im, *args, **kwargs): visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False return self.model(im, augment=self.args.augment, visualize=visualize) def pre_transform(self, im): """Pre-transform input image before inference. Args: im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. Return: A list of transformed imgs. """ same_shapes = all(x.shape == im[0].shape for x in im) auto = same_shapes and self.model.pt return [LetterBox(self.imgsz, auto=auto, stride=self.model.stride)(image=x) for x in im] def write_results(self, idx, results, batch): """Write inference results to a file or directory.""" p, im, _ = batch log_string = '' if len(im.shape) == 3: im = im[None] # expand for batch dim if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1 log_string += f'{idx}: ' frame = self.dataset.count else: frame = getattr(self.dataset, 'frame', 0) self.data_path = p self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}') log_string += '%gx%g ' % im.shape[2:] # print string result = results[idx] log_string += result.verbose() if self.args.save or self.args.show: # Add bbox to image plot_args = { 'line_width': self.args.line_width, 'boxes': self.args.boxes, 'conf': self.args.show_conf, 'labels': self.args.show_labels} if not self.args.retina_masks: plot_args['im_gpu'] = im[idx] self.plotted_img = result.plot(**plot_args) # Write if self.args.save_txt: result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf) if self.args.save_crop: result.save_crop(save_dir=self.save_dir / 'crops', file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}')) return log_string def postprocess(self, preds, img, orig_imgs): """Post-processes predictions for an image and returns them.""" return preds def __call__(self, source=None, model=None, stream=False, *args, **kwargs): """Performs inference on an image or stream.""" self.stream = stream if stream: return self.stream_inference(source, model, *args, **kwargs) else: return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one def predict_cli(self, source=None, model=None): """Method used for CLI prediction. It uses always generator as outputs as not required by CLI mode.""" gen = self.stream_inference(source, model) for _ in gen: # running CLI inference without accumulating any outputs (do not modify) pass def setup_source(self, source): """Sets up source and inference mode.""" self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size self.transforms = getattr(self.model.model, 'transforms', classify_transforms( self.imgsz[0])) if self.args.task == 'classify' else None self.dataset = load_inference_source(source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride) self.source_type = self.dataset.source_type if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams len(self.dataset) > 1000 or # images any(getattr(self.dataset, 'video_flag', [False]))): # videos LOGGER.warning(STREAM_WARNING) self.vid_path, self.vid_writer = [None] * self.dataset.bs, [None] * self.dataset.bs @smart_inference_mode() def stream_inference(self, source=None, model=None, *args, **kwargs): """Streams real-time inference on camera feed and saves results to file.""" if self.args.verbose: LOGGER.info('') # Setup model if not self.model: self.setup_model(model) # Setup source every time predict is called self.setup_source(source if source is not None else self.args.source) # Check if save_dir/ label file exists if self.args.save or self.args.save_txt: (self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) # Warmup model if not self.done_warmup: self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) self.done_warmup = True self.seen, self.windows, self.batch, self.profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile()) self.run_callbacks('on_predict_start') for batch in self.dataset: self.run_callbacks('on_predict_batch_start') self.batch = batch path, im0s, vid_cap, s = batch # Preprocess with self.profilers[0]: im = self.preprocess(im0s) # Inference with self.profilers[1]: preds = self.inference(im, *args, **kwargs) # Postprocess with self.profilers[2]: self.results = self.postprocess(preds, im, im0s) self.run_callbacks('on_predict_postprocess_end') # Visualize, save, write results n = len(im0s) for i in range(n): self.seen += 1 self.results[i].speed = { 'preprocess': self.profilers[0].dt * 1E3 / n, 'inference': self.profilers[1].dt * 1E3 / n, 'postprocess': self.profilers[2].dt * 1E3 / n} p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy() p = Path(p) if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: s += self.write_results(i, self.results, (p, im, im0)) if self.args.save or self.args.save_txt: self.results[i].save_dir = self.save_dir.__str__() if self.args.show and self.plotted_img is not None: self.show(p) if self.args.save and self.plotted_img is not None: self.save_preds(vid_cap, i, str(self.save_dir / p.name)) self.run_callbacks('on_predict_batch_end') yield from self.results # Print time (inference-not only) if self.args.verbose: LOGGER.info(f'{s}{(self.profilers[0].dt+self.profilers[1].dt+self.profilers[2].dt) * 1E3:.2f}ms') # Release assets if isinstance(self.vid_writer[-1], cv2.VideoWriter): self.vid_writer[-1].release() # release final video writer # Print results if self.args.verbose and self.seen: t = tuple(x.t / self.seen * 1E3 for x in self.profilers) # speeds per image LOGGER.info(f'Speed: %.2fms preprocess, %.2fms inference, %.2fms postprocess per image at shape ' f'{(1, 3, *im.shape[2:])}' % t) if self.args.save or self.args.save_txt or self.args.save_crop: nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") self.run_callbacks('on_predict_end') def setup_model(self, model, verbose=True): """Initialize YOLO model with given parameters and set it to evaluation mode.""" self.model = AutoBackend(model or self.args.model, device=select_device(self.args.device, verbose=verbose), dnn=self.args.dnn, data=self.args.data, fp16=self.args.half, fuse=True, verbose=verbose) self.device = self.model.device # update device self.args.half = self.model.fp16 # update half self.model.eval() def show(self, p): """Display an image in a window using OpenCV imshow().""" im0 = self.plotted_img #--------------------后添加----------------------------- str_FPS = "FPS: %.2f" % (1. / (self.profilers[0].dt + self.profilers[1].dt + self.profilers[2].dt)) cv2.putText(im0, str_FPS, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 3) # --------------------后添加----------------------------- if platform.system() == 'Linux' and p not in self.windows: self.windows.append(p) cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond def save_preds(self, vid_cap, idx, save_path): """Save video predictions as mp4 at specified path.""" im0 = self.plotted_img # Save imgs if self.dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if self.vid_path[idx] != save_path: # new video self.vid_path[idx] = save_path if isinstance(self.vid_writer[idx], cv2.VideoWriter): self.vid_writer[idx].release() # release previous video writer if vid_cap: # video fps = int(vid_cap.get(cv2.CAP_PROP_FPS)) # integer required, floats produce error in MP4 codec w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] suffix = '.mp4' if MACOS else '.avi' if WINDOWS else '.avi' fourcc = 'avc1' if MACOS else 'WMV2' if WINDOWS else 'MJPG' save_path = str(Path(save_path).with_suffix(suffix)) self.vid_writer[idx] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) self.vid_writer[idx].write(im0) def run_callbacks(self, event: str): """Runs all registered callbacks for a specific event.""" for callback in self.callbacks.get(event, []): callback(self) def add_callback(self, event: str, func): """ Add callback """ self.callbacks[event].append(func)