这里项目链接查看,或者这里下载。
经过本人测试,与yolov5-7.0相比,训练好的权重文件大小大约是yolov5-7.0的0.3倍(yolov5-Lite——3.4M,yolov5-7.0——13M),置信度均在0.9之上。特别的,我之所以使用此Lite改进算法,是因为需要部署在智能小车上实现图像识别的功能,而小车上只有CPU,yolov5-7.0使用CPU计算的速度太慢了,一秒只能处理3张图像,距离功能的要求还差些,而Lite算法的权重参数减少了很多,速度也相应快了一些,部署在小车上,使用CPU计算的速度快了0.8倍,不算很多,但也算是勉强能使用了,每秒5/6张图片。
算法自带检测图片、视频的detect.py脚本,但是拿来自己灵活的使用还是有许多问题,一般图像检测都是对实时性有要求,detect.py脚本是检测本地的图片视频。我修改一部分代码,将detect.py脚本写成一个api,直接调用函数,传入一个img数组对象,即可输出detections字典,包含各检测对象的类别、位置信息、置信度。
def detect(save_img=False): source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size save_img = not opt.nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or view_img: # Add bbox to image label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') # Stream results if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") print(f'Done. ({time.time() - t0:.3f}s)')
class DETECT_API: def __init__(self,opt): weights,imgsz = opt.weights,opt.img_size self.device = select_device(opt.device) # device = device_ if torch.cuda.is_available() else 'cpu' # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu # self.device = device self.half = self.device.type != 'cpu' # half precision only supported on CUDA # self.imgsz = (imgsz, imgsz) # 输入图片的大小 默认640(pixels) self.conf_thres = opt.conf_thres # object置信度阈值 默认0.25 用在nms中 self.iou_thres = opt.iou_thres # 做nms的iou阈值 默认0.45 用在nms中 # self.max_det = max_det # 每张图片最多的目标数量 用在nms中 self.classes = opt.classes # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3 self.agnostic_nms = opt.agnostic_nms # 进行nms是否也除去不同类别之间的框 默认False self.augment = opt.augment # 预测是否也要采用数据增强 TTA 默认False # self.visualize = False # 特征图可视化 默认FALSE # self.half = False # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False # self.dnn = False # 使用OpenCV DNN进行ONNX推理 # Load model self.model = attempt_load(weights, map_location=self.device) # load FP32 model if self.half: self.model.half() # to FP16 if self.device.type != 'cpu': self.model(torch.zeros(1, 3, imgsz, imgsz).to(self.device).type_as(next(self.model.parameters()))) # run once self.stride = int(self.model.stride.max()) # model stride self.imgsz = check_img_size(imgsz, s=self.stride) # check img_size # Get names and colors self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names] def detect2(self,img): ''' 检测图像,输入图片数组 Args: img: 图片数组 Returns:字典{'class': cls, 'conf': conf, 'position': xywh} ''' # Set Dataloader # dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride) # 用于存放结果 detections = [] s = '' if True: # print(path) im0 = img*1 # Padded resize img = letterbox(im0, self.imgsz, stride=self.stride)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = ascontiguousarray(img) # np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = self.model(img, augment=self.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms) t2 = time_synchronized() # Process detections for i, det in enumerate(pred): # detections per image s = '%gx%g ' % img.shape[2:] # print string if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() xywh = [round(x) for x in xywh] xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2], xywh[3]] # 检测到目标位置,格式:(left,top,w,h) cls = self.names[int(cls)] conf = float(conf) detections.append({'class': cls, 'conf': conf, 'position': xywh}) # 输出结果 for i in detections: print(i) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') return detections
将代码封装为一个类,先载入模型,之后就可以传入图像进行图像检测了。
未来更好测试,写了各简单的GUI。使用python自带的tkinter库实现。
# 界面设计 detect_state = False top = tk.Tk() top.title('YOLOV5-Lite Detect') top['bg'] = 'white' width = 300 height = 150 win_width = top.winfo_screenwidth() win_height = top.winfo_screenheight() center_place = str(int(win_width/2 - width/2))+'+'+str(int(win_height/2 - height/2)) top.geometry(str(width)+'x'+str(height)+'+'+center_place) label = tk.Label(top,text='path') label.pack(fill='both') btn_img = tk.Button(top,text='选择图片',command=select_img) btn_img.pack(fill='both') btn_video = tk.Button(top,text='选择视频',command=select_video) btn_video.pack(fill='both') btn_detect = tk.Button(top,text='DETECT',command=mt_detect) btn_detect.pack(fill='both') top.mainloop()
import tkinter as tk from tkinter import filedialog#用于打开文件 核心:filepath = filedialog.askopenfilename() #获得选择好的文件,单个文件 import argparse import time from pathlib import Path import cv2 import torch import torch.backends.cudnn as cudnn from numpy import random, ascontiguousarray from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages, letterbox from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path from utils.plots import plot_one_box from utils.torch_utils import select_device, load_classifier, time_synchronized class DETECT_API: def __init__(self,opt): weights,imgsz = opt.weights,opt.img_size self.device = select_device(opt.device) # device = device_ if torch.cuda.is_available() else 'cpu' # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu # self.device = device self.half = self.device.type != 'cpu' # half precision only supported on CUDA # self.imgsz = (imgsz, imgsz) # 输入图片的大小 默认640(pixels) self.conf_thres = opt.conf_thres # object置信度阈值 默认0.25 用在nms中 self.iou_thres = opt.iou_thres # 做nms的iou阈值 默认0.45 用在nms中 # self.max_det = max_det # 每张图片最多的目标数量 用在nms中 self.classes = opt.classes # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3 self.agnostic_nms = opt.agnostic_nms # 进行nms是否也除去不同类别之间的框 默认False self.augment = opt.augment # 预测是否也要采用数据增强 TTA 默认False # self.visualize = False # 特征图可视化 默认FALSE # self.half = False # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False # self.dnn = False # 使用OpenCV DNN进行ONNX推理 # Load model self.model = attempt_load(weights, map_location=self.device) # load FP32 model if self.half: self.model.half() # to FP16 if self.device.type != 'cpu': self.model(torch.zeros(1, 3, imgsz, imgsz).to(self.device).type_as(next(self.model.parameters()))) # run once self.stride = int(self.model.stride.max()) # model stride self.imgsz = check_img_size(imgsz, s=self.stride) # check img_size # Get names and colors self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names] def detect(self,img_path): ''' 检测图像,输入图片路径,不能输入视频路径 Args: img_path: 图片路径 Returns:字典{'class': cls, 'conf': conf, 'position': xywh} ''' # Set Dataloader dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride) # 用于存放结果 detections = [] s = '' for path, img, im0s, vid_cap in dataset: print(path) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = self.model(img, augment=self.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms) t2 = time_synchronized() # Process detections for i, det in enumerate(pred): # detections per image s = '%gx%g ' % img.shape[2:] # print string im0 = im0s if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() xywh = [round(x) for x in xywh] xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2], xywh[3]] # 检测到目标位置,格式:(left,top,w,h) cls = self.names[int(cls)] conf = float(conf) detections.append({'class': cls, 'conf': conf, 'position': xywh}) # 输出结果 for i in detections: print(i) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') return detections def detect2(self,img): ''' 检测图像,输入图片数组 Args: img: 图片数组 Returns:字典{'class': cls, 'conf': conf, 'position': xywh} ''' # Set Dataloader # dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride) # 用于存放结果 detections = [] s = '' if True: # print(path) im0 = img*1 # Padded resize img = letterbox(im0, self.imgsz, stride=self.stride)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = ascontiguousarray(img) # np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = self.model(img, augment=self.augment)[0] # Apply NMS pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms) t2 = time_synchronized() # Process detections for i, det in enumerate(pred): # detections per image s = '%gx%g ' % img.shape[2:] # print string if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() xywh = [round(x) for x in xywh] xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2], xywh[3]] # 检测到目标位置,格式:(left,top,w,h) cls = self.names[int(cls)] conf = float(conf) detections.append({'class': cls, 'conf': conf, 'position': xywh}) # 输出结果 for i in detections: print(i) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') return detections def select_img(): global detect_state pass filepath = filedialog.askopenfilename(title='选择图片',filetypes=[('图片', '*.jpg *.png'), ('All files', '*')]) label['text'] = filepath detect_state = 1 def select_video(): global detect_state pass filepath = filedialog.askopenfilename(title='选择视频', filetypes=[('视频', '*.mp4'), ('All files', '*')]) label['text'] = filepath detect_state = 2 def mt_detect(): global detect_state pass path = label['text'] print(path) if not detect_state: print('请选择图片或视频') else: # opt.source = path if detect_state == 1: show_img(path) elif detect_state == 2: show_video(path) detect_state = 0 def show_img(img_path): # # 传入图片路径 # detections = Detect.detect(img_path) # print(detections) img = cv2.imread(img_path) t1 = time.time() detections = Detect.detect2(img) t2 = time.time() for i in detections: # print(i) x, y, w, h = i['position'] img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3) img = cv2.putText(img, "{} {}".format(i['class'], round(i['conf'], 4)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA) img = cv2.putText(img, "{}s".format( round((t2 - t1), 3)), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1, cv2.LINE_AA) cv2.imshow('yolov5-Lite img', img) cv2.waitKey(0) cv2.destroyAllWindows() def show_video(video_path): cap = cv2.VideoCapture(video_path) while cap.isOpened(): ret, img = cap.read() if ret: pass t1 = time.time() detections = Detect.detect2(img) t2 = time.time() for i in detections: # print(i) x, y, w, h = i['position'] img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3) img = cv2.putText(img, "{} {}".format(i['class'], round(i['conf'], 4)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA) img = cv2.putText(img, "{}FPS - {}s".format(round(1/(t2-t1),2), round((t2-t1),3)), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1,cv2.LINE_AA) cv2.imshow('yolov5-Lite img', img) # cv2.waitKey(1000) if cv2.waitKey(10) == ord('q'): break else: break cap.release() cv2.destroyAllWindows() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp9/weights/best.pt', help='model.pt path(s)') #parser.add_argument('--source', type=str,default='',help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='display results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') opt = parser.parse_args() print(opt) check_requirements(exclude=('pycocotools', 'thop')) # 初始化模型 Detect = DETECT_API(opt) print('初始化完成/n') # 界面设计 detect_state = False top = tk.Tk() top.title('YOLOV5-Lite Detect') top['bg'] = 'white' width = 300 height = 150 win_width = top.winfo_screenwidth() win_height = top.winfo_screenheight() center_place = str(int(win_width/2 - width/2))+'+'+str(int(win_height/2 - height/2)) top.geometry(str(width)+'x'+str(height)+'+'+center_place) label = tk.Label(top,text='path') label.pack(fill='both') btn_img = tk.Button(top,text='选择图片',command=select_img) btn_img.pack(fill='both') btn_video = tk.Button(top,text='选择视频',command=select_video) btn_video.pack(fill='both') btn_detect = tk.Button(top,text='DETECT',command=mt_detect) btn_detect.pack(fill='both') top.mainloop()
首先,你需要配置yolov5-Lite算法的运行环境,使能够正确的训练模型。配置过程与yolov5-7.0一致,如果报错,检测对应的库的版本是否符合条件,一般不需要最新的库,库的版本不要太高。训练好模型权重之后,parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp9/weights/best.pt', help='model.pt path(s)')修改成自己的权重路径即可。
红色警告是torch版本问题,可以忽略,暂时没发现有什么影响。
先到这吧,有问题可评论。
上一篇:Opencv图像处理(全)