最近在数学建模中碰见需要绘制Radar图(雷达图)的情况来具体分析样本的各个特征之间的得分与优劣关系,这样的情况比较符合雷达图的使用场景,一般来说,雷达图适用于展示多个维度的数据,并在一个平面上直观地呈现出不同维度的变化趋势,比较适用的场合如下:
∙ \bullet ∙综合评价: 雷达图是理想的工具,能够直观展示多个评价指标的得分,为综合评估提供清晰的整体表现概览。
∙ \bullet ∙SWOT分析: 通过SWOT分析,雷达图展示了组织或项目在各方面的优势、劣势、机会和威胁,为战略决策提供直观支持。
∙ \bullet ∙个体特征对比: 通过雷达图,我们可以比较不同个体在各个特征上的差异,无论是个人技能评估还是产品性能对比,一目了然。
import numpy as np import matplotlib.pyplot as plt import matplotlib import warnings warnings.filterwarnings("ignore") matplotlib.rcParams['font.family'] = 'serif' matplotlib.rcParams['font.serif'] = 'Times New Roman' #需要评价的特征名称 labels = np.array(['Comprehensive', 'Education', 'Professional Title', 'Teaching', 'Training', 'Research']) labels = np.array(['A1', 'A2', 'A3', 'A4', 'A5', 'A6']) #需要评价的特征的数量 nAttr = len(labels) #数据/得分情况 data = np.array([8, 5, 8, 9, 8, 6]) #计算角度360/n angels = np.linspace(0, 2*np.pi, nAttr, endpoint=False) #创建数据闭环效果 data = np.concatenate((data, [data[0]])) angels = np.concatenate((angels, [angels[0]])) #可视化绘图 fig = plt.figure(facecolor='white') ax = plt.subplot(111, polar=True) ax.set_ylim(0, 10) #绘制线条 ax.plot(angels, data, 'o-', color='lightgreen', linewidth=2, label='A Personal Characteristics') #添加数值标签(选写) for i in range(len(angels)-1): ax.text(angels[i], data[i]+0.8, str(data[i]), color='b') #填充区域 ax.fill(angels, data, facecolor='red', alpha=0.25) ax.set_xticks(angels[:-1]) ax.set_xticklabels(labels, ha='center') ax.set_title('Academic Scholar Research Feature Radar Chart', va='bottom', fontweight='bold') #设置一些图例要求 plt.grid(True) #plt.legend(loc='upper right') #plt.legend(loc='upper right', bbox_to_anchor=(1.2, 0.55), bbox_transform=plt.gcf().transFigure) plt.savefig('雷达图1.jpg') plt.show()
import numpy as np import matplotlib.pyplot as plt import matplotlib import warnings warnings.filterwarnings("ignore") matplotlib.rcParams['font.family'] = 'serif' matplotlib.rcParams['font.serif'] = 'Times New Roman' matplotlib.rcParams['font.style'] = 'italic' radar_labels = np.array(['A1', 'A2', 'A3', 'A4', 'A5', 'A6']) nAttr = 6 data = np.array([[0.40, 0.32, 0.35, 0.30, 0.30, 0.88], [0.85, 0.35, 0.30, 0.40, 0.40, 0.30], [0.43, 0.89, 0.30, 0.28, 0.22, 0.30], [0.30, 0.25, 0.48, 0.85, 0.45, 0.40], [0.20, 0.38, 0.87, 0.45, 0.32, 0.28], [0.34, 0.31, 0.38, 0.40, 0.92, 0.28]]) data_labels = ('Engineer', 'Laboratory Technician', 'Artist', 'Salesperson', 'Social Worker', 'Clerk') angles = np.linspace(0, 2*np.pi, nAttr, endpoint=False) data = np.concatenate((data, [data[0]])) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure(facecolor='white') ax = plt.subplot(111, polar=True) ax.plot(angles, data, 'o-', linewidth=1, alpha=0.2) ax.fill(angles, data, alpha=0.3) ax.set_thetagrids(np.degrees(angles[0:6]), labels=radar_labels) ax.set_title('Holland Personality Analysis', va='bottom', fontweight='bold', size=16) legend = plt.legend(data_labels, loc=(1.1, 0.55), labelspacing=0.1, edgecolor='k', fontsize=10) plt.grid(True) plt.savefig('雷达图2.jpg') plt.show()
import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle, RegularPolygon from matplotlib.path import Path from matplotlib.projections.polar import PolarAxes from matplotlib.projections import register_projection from matplotlib.spines import Spine from matplotlib.transforms import Affine2D def radar_factory(num_vars, frame='circle'): """ Create a radar chart with `num_vars` axes. This function creates a RadarAxes projection and registers it. Parameters ---------- num_vars : int Number of variables for radar chart. frame : {'circle', 'polygon'} Shape of frame surrounding axes. """ # calculate evenly-spaced axis angles theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False) class RadarTransform(PolarAxes.PolarTransform): def transform_path_non_affine(self, path): # Paths with non-unit interpolation steps correspond to gridlines, # in which case we force interpolation (to defeat PolarTransform's # autoconversion to circular arcs). if path._interpolation_steps > 1: path = path.interpolated(num_vars) return Path(self.transform(path.vertices), path.codes) class RadarAxes(PolarAxes): name = 'radar' PolarTransform = RadarTransform def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # rotate plot such that the first axis is at the top self.set_theta_zero_location('N') def fill(self, *args, closed=True, **kwargs): """Override fill so that line is closed by default""" return super().fill(closed=closed, *args, **kwargs) def plot(self, *args, **kwargs): """Override plot so that line is closed by default""" lines = super().plot(*args, **kwargs) for line in lines: self._close_line(line) def _close_line(self, line): x, y = line.get_data() # FIXME: markers at x[0], y[0] get doubled-up if x[0] != x[-1]: x = np.append(x, x[0]) y = np.append(y, y[0]) line.set_data(x, y) def set_varlabels(self, labels): self.set_thetagrids(np.degrees(theta), labels) def _gen_axes_patch(self): # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5 # in axes coordinates. if frame == 'circle': return Circle((0.5, 0.5), 0.5) elif frame == 'polygon': return RegularPolygon((0.5, 0.5), num_vars, radius=.5, edgecolor="k") else: raise ValueError("Unknown value for 'frame': %s" % frame) def _gen_axes_spines(self): if frame == 'circle': return super()._gen_axes_spines() elif frame == 'polygon': # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'. spine = Spine(axes=self, spine_type='circle', path=Path.unit_regular_polygon(num_vars)) # unit_regular_polygon gives a polygon of radius 1 centered at # (0, 0) but we want a polygon of radius 0.5 centered at (0.5, # 0.5) in axes coordinates. spine.set_transform(Affine2D().scale(.5).translate(.5, .5) + self.transAxes) return {'polar': spine} else: raise ValueError("Unknown value for 'frame': %s" % frame) register_projection(RadarAxes) return theta def example_data(): # The following data is from the Denver Aerosol Sources and Health study. # See doi:10.1016/j.atmosenv.2008.12.017 # # The data are pollution source profile estimates for five modeled # pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical # species. The radar charts are experimented with here to see if we can # nicely visualize how the modeled source profiles change across four # scenarios: # 1) No gas-phase species present, just seven particulate counts on # Sulfate # Nitrate # Elemental Carbon (EC) # Organic Carbon fraction 1 (OC) # Organic Carbon fraction 2 (OC2) # Organic Carbon fraction 3 (OC3) # Pyrolyzed Organic Carbon (OP) # 2)Inclusion of gas-phase specie carbon monoxide (CO) # 3)Inclusion of gas-phase specie ozone (O3). # 4)Inclusion of both gas-phase species is present... data = [ ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'], ('Basecase', [ [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00], [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00], [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00], [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00], [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]), ('With CO', [ [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00], [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00], [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00], [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00], [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]), ('With O3', [ [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03], [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00], [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00], [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95], [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]), ('CO & O3', [ [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01], [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00], [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00], [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88], [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]]) ] return data if __name__ == '__main__': N = 9 theta = radar_factory(N, frame='polygon') data = example_data() spoke_labels = data.pop(0) fig, axs = plt.subplots(figsize=(9, 9), nrows=2, ncols=2, subplot_kw=dict(projection='radar')) fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05) colors = ['b', 'r', 'g', 'm', 'y'] # Plot the four cases from the example data on separate axes for ax, (title, case_data) in zip(axs.flat, data): ax.set_rgrids([0.2, 0.4, 0.6, 0.8]) ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1), horizontalalignment='center', verticalalignment='center') for d, color in zip(case_data, colors): ax.plot(theta, d, color=color) ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_') ax.set_varlabels(spoke_labels) # add legend relative to top-left plot labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5') legend = axs[0, 0].legend(labels, loc=(0.98, -0.2), labelspacing=0.1, fontsize=12,edgecolor='k') fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios', horizontalalignment='center', color='black', weight='bold', size=16) plt.savefig('雷达图3.jpg') plt.show()