import os
import json
from flask import Flask
from flask import request
from transformers import AutoTokenizer, AutoModel
# system params
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
tokenizer = AutoTokenizer.from_pretrained(r".\chatglm2-6b-int4", trust_remote_code=True)
model = AutoModel.from_pretrained(r".\chatglm2-6b-int4", trust_remote_code=True).half().cuda()
model.eval()
app = Flask(__name__)
@app.route("/chat", methods=["POST"])
def chat():
"""chat
"""
data_seq = request.get_data()
data_dict = json.loads(data_seq)
human_input = data_dict["human_input"]
response, _ = model.chat(tokenizer, human_input, history=[])
result_dict = {
"response": response
}
result_seq = json.dumps(result_dict, ensure_ascii=False)
return result_seq
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8595, debug=False)
openai_api_key = "xxxx"
import os
import openai
# !pip install langchain langchain-experimental openai -q
from langchain import OpenAI, SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain
import time
import logging
import requests
from typing import Optional, List, Dict, Mapping, Any
import langchain
from langchain.llms.base import LLM
from langchain.cache import InMemoryCache
logging.basicConfig(level=logging.INFO)
# 启动llm的缓存
langchain.llm_cache = InMemoryCache()
class ChatGLM(LLM):
# 模型服务url
url = "http://127.0.0.1:8595/chat"
@property
def _llm_type(self) -> str:
return "chatglm"
def _construct_query(self, prompt: str) -> Dict:
"""构造请求体
"""
query = {
"human_input": prompt
}
return query
@classmethod
def _post(cls, url: str,
query: Dict) -> Any:
"""POST请求
"""
_headers = {"Content_Type": "application/json"}
with requests.session() as sess:
resp = sess.post(url,
json=query,
headers=_headers,
timeout=60)
return resp
def _call(self, prompt: str,
stop: Optional[List[str]] = None) -> str:
"""_call
"""
# construct query
query = self._construct_query(prompt=prompt)
# post
resp = self._post(url=self.url,
query=query)
if resp.status_code == 200:
resp_json = resp.json()
predictions = resp_json["response"]
return predictions
else:
return "请求模型"
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters.
"""
_param_dict = {
"url": self.url
}
return _param_dict
# llm = OpenAI(temperature=0, openai_api_key="")
if __name__ == "__main__":
llm = ChatGLM()
# sqlite_db_path ='./chinook.db'
db = SQLDatabase.from_uri(f"mysql://用户名:密码@ip:端口号/数据库名?charset=数据库编码")
db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)
db_chain.run(用户问题)