该体系结构只有AArch32执行状态。执行状态定义了处理器的执行环境,包括:
Armv8-R AArch32的异常等级为: EL0~EL2
EL0:Applications
EL1: 通常被描述为特权的操作系统内核和相关函数
EL2: Hypervisor
只有在发生异常或从异常返回时,执行才能在异常级别之间切换:
发生异常时执行更改或保留在的异常级别称为异常的目标异常级别,并且:
当处于AArch32状态时,处理器可以以几种模式之一执行。每个模式都与一个异常级别相关联。有些模式有一些通用寄存器的私有、bank副本。异常情况会导致处理器切换到一个特定的模式。
下表显示了AArch32处理器模式,以及每个模式的异常级别
Armv8提供了互斥的内存类型。内存映射中的每个地址都有一个由MPU决定的内存类型。
内存类型:
Armv8架构将设备内存细分为几个子类型。这些属性涉及以下属性:
下表描述了Armv8的内存类型。
系统寄存器提供控制和状态信息。例如,寄存器可能提供有关core已采取的abort exception的综合信息,或提供一个启用或禁用缓存的控制。
系统寄存器使用一种标准的命名格式,
系统寄存器包括:
Armv8-R AArch提供了对15个32位通用寄存器R0-R14的访问。
其中,有两个有专门的或受限制的用途:
当然,还有一个32位的程序计数器(PC),R15。
其中一些寄存器是bank上的。这些是使用相同的标识符访问的多个物理寄存器,执行模式决定了访问哪个寄存器。例如:
在Hypervisor模式下,还有一个附加的专用链接寄存器,ELR_hyp。
高级SIMD和浮点指令使用了另一组寄存器。这些寄存器可以作为32位单精度寄存器S0-S31访问,也可以作为64位双精度寄存器D0- D31访问,或128位四元寄存器Q0-Q15访问,但这些是相同数据的不同视图。数据可以在高级SIMD和浮点寄存器和整数寄存器之间传输。
程序状态寄存器包括当前程序状态寄存器(CPSR)、应用程序状态寄存器(APSR)和已保存的程序状态寄存器(SPSR)。
CPSR包括:
CPSR中的许多位都限制了使用,并且只能进行修改:
呈现给运行在异常级别EL0上的应用程序的CPSR的视图称为APSR。
每个可以采用异常的模式都有自己的SPSR。每个SPSR用于在发生异常时保存CPSR的副本,从而允许在异常返回时恢复它。
AArch32体系结构支持以下整数数据类型:
该架构还支持半精度、单精度和双精度的浮点数据类型。
该架构定义了PMSAv8内存模型,以确定:
Cortex-R52+支持PMSAv8,并且没有MMU或地址转换功能。即使MPU不执行任何实际的转换,该函数仍然被称为转换。这是因为物理地址总是与虚拟地址是相同的。虚拟地址和物理地址是指由指令生成的转换前和转换后在总线上可见的地址。虚拟地址和物理地址可以作为Cortex-R52+的一套地址来处理。
Cortex-R52+处理器支持GIC架构的三个组件:分发器(Distributor)、再分发器(Redistributor)和CPU接口(CPU interface)。
分发器包含支持SPIs的寄存器,除了优先级逻辑,它计算每个核心的最高优先级等待中断。再分发器包含支持PPIs和SGIs的寄存器。CPU接口跟踪当前正在运行的优先级和虚拟中断。它决定了核心是否被中断。
中断被配置为对边缘触发或电平敏感的。每个中断都具有可编程启用、优先级(0-31)、组(0或1)、路由(仅SPI)配置和当前状态。
当接收到中断信号时,它被pending。根据其配置,一个pending中断可能会中断一个core的执行。软件可以读取中断的ID,并且激活(active)它。软件还可以结束一个中断,从而使其失效(deactives)。
虚拟中断是由系统管理程序(hypervisor)软件写入CPU接口中的列表寄存器而创建的,通常是为了响应物理中断。虚拟中断的处理方式与物理中断类似,但只能在core处于EL0或EL1中时中断它。当一个虚拟中断被停用(deactive)时,可以对其进行配置,即当该虚拟中断被停用时,相应的物理停用消息也会发送给GIC分发器。
该章会单独写几篇文章说明,别担心
Arm® Cortex®-R52+ Processor Technical Reference Manual
上一篇:为什么时序逻辑电路会落后一拍?