为了巩固所学的知识,作者尝试着开始发布一些学习笔记类的博客,方便日后回顾。当然,如果能帮到一些萌新进行新技术的学习那也是极好的。作者菜菜一枚,文章中如果有记录错误,欢迎读者朋友们批评指正。
(博客的参考源码可以在我主页的资源里找到,如果在学习的过程中有什么疑问欢迎大家在评论区向我提出)
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。
http://jhsjk.people.cn/testnew/result
import os import re from datetime import datetime import requests import json from bs4 import BeautifulSoup from pymongo import MongoClient from tqdm import tqdm class ArticleCrawler: def __init__(self, catalogues_url, card_root_url, output_dir, db_name='ren-ming-wang'): self.catalogues_url = catalogues_url self.card_root_url = card_root_url self.output_dir = output_dir self.client = MongoClient('mongodb://localhost:27017/') self.db = self.client[db_name] self.catalogues = self.db['catalogues'] self.cards = self.db['cards'] self.headers = { 'Referer': 'https://jhsjk.people.cn/result?', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/119.0.0.0 Safari/537.36', 'Cookie': '替换成你自己的', } # 发送带参数的get请求并获取页面内容 def fetch_page(self, url, page): params = { 'keywords': '', 'isFuzzy': '0', 'searchArea': '0', 'year': '0', 'form': '', 'type': '0', 'page': page, 'origin': '全部', 'source': '2', } response = requests.get(url, params=params, headers=self.headers) soup = BeautifulSoup(response.text, 'html.parser') return soup # 解析请求版面 def parse_catalogues(self, json_catalogues): card_list = json_catalogues['list'] for list in card_list: a_tag = 'article/'+list['article_id'] card_url = self.card_root_url + a_tag card_title = list['title'] updateTime = list['input_date'] self.parse_cards(card_url, updateTime) date = datetime.now() catalogues_id = list['article_id']+'01' # 检查重复标题 existing_docs = self.catalogues.find_one({'id': catalogues_id}) if existing_docs is not None: print(f'版面id: {catalogues_id}【已经存在】') continue card_data = { 'id': catalogues_id, 'title': card_title, 'page': 1, 'serial': 1, # 一个版面一个文章 'dailyId': '', 'cardSize': 1, 'subjectCode': '50', 'updateTime': updateTime, 'institutionnCode': '10000', 'date': date, 'snapshot': { } } self.catalogues.insert_one(card_data) print(f'版面id: {catalogues_id}【插入成功】') # 解析请求文章 def parse_cards(self, url, updateTime): response = requests.get(url, headers=self.headers) soup = BeautifulSoup(response.text, "html.parser") try: title = soup.find("div", "d2txt clearfix").find('h1').text except: try: title = soup.find('h1').text except: print(f'【无法解析该文章标题】{url}') html_content = soup.find('div', 'd2txt_con clearfix') text = html_content.get_text() imgs = [img.get('src') or img.get('data-src') for img in html_content.find_all('img')] cleaned_content = self.clean_content(text) # 假设我们有一个正则表达式匹配对象match match = re.search(r'\d+', url) # 获取匹配的字符串 card_id = match.group() date = datetime.now() if len(imgs) != 0: # 下载图片 self.download_images(imgs, card_id) # 创建文档 document = { 'id': card_id, 'serial': 1, 'page': 1, 'url' : url, 'type': 'ren-ming-wang', 'catalogueId': card_id + '01', 'subjectCode': '50', 'institutionCode': '10000', 'updateTime': updateTime, 'flag': 'true', 'date': date, 'title': title, 'illustrations': imgs, 'html_content': str(html_content), 'content': cleaned_content } # 检查重复标题 existing_docs = self.cards.find_one({'id': card_id}) if existing_docs is None: # 插入文档 self.cards.insert_one(document) print(f"文章id:{card_id}【插入成功】") else: print(f"文章id:{card_id}【已经存在】") # 文章数据清洗 def clean_content(self, content): if content is not None: content = re.sub(r'\r', r'\n', content) content = re.sub(r'\n{2,}', '', content) # content = re.sub(r'\n', '', content) content = re.sub(r' {6,}', '', content) content = re.sub(r' {3,}\n', '', content) content = content.replace('', '').replace('<\P>', '').replace(' ', ' ') return content # 下载图片 def download_images(self, img_urls, card_id): # 根据card_id创建一个新的子目录 images_dir = os.path.join(self.output_dir, card_id) if not os.path.exists(images_dir): os.makedirs(images_dir) downloaded_images = [] for img_url in img_urls: try: response = requests.get(img_url, stream=True) if response.status_code == 200: # 从URL中提取图片文件名 image_name = os.path.join(images_dir, img_url.split('/')[-1]) # 确保文件名不重复 if os.path.exists(image_name): continue with open(image_name, 'wb') as f: f.write(response.content) downloaded_images.append(image_name) print(f"Image downloaded: {img_url}") except Exception as e: print(f"Failed to download image {img_url}. Error: {e}") return downloaded_images # 如果文件夹存在则跳过 else: print(f'文章id为{card_id}的图片文件夹已经存在') # 查找共有多少页 def find_page_all(self, soup): # 查找标签 em_tag = soup.find('em', onclick=True) # 从onclick属性中提取页码 if em_tag and 'onclick' in em_tag.attrs: onclick_value = em_tag['onclick'] page_number = int(onclick_value.split('(')[1].split(')')[0]) return page_number else: print('找不到总共有多少页数据') # 关闭与MongoDB的连接 def close_connection(self): self.client.close() # 执行爬虫,循环获取多页版面及文章并存储 def run(self): soup_catalogue = self.fetch_page(self.catalogues_url, 1) page_all = self.find_page_all(soup_catalogue) if page_all: for index in tqdm(range(1, page_all), desc='Page'): # for index in tqdm(range(1, 50), desc='Page'): soup_catalogues = self.fetch_page(self.catalogues_url, index).text # 解析JSON数据 soup_catalogues_json = json.loads(soup_catalogues) self.parse_catalogues(soup_catalogues_json) print(f'======================================Finished page {index}======================================') self.close_connection() if __name__ == "__main__": crawler = ArticleCrawler( catalogues_url='http://jhsjk.people.cn/testnew/result', card_root_url='http://jhsjk.people.cn/', output_dir='D:\\ren-ming-wang\\img' ) crawler.run() # 运行爬虫,搜索所有内容 crawler.close_connection() # 关闭数据库连接