Flink Upsert Kafka SQL Connector 介绍
作者:mmseoamin日期:2024-02-24

一 前言

在某些场景中,比方GROUP BY聚合之后的后果,须要去更新之前的结果值。这个时候,须要将 Kafka 记录的 key 当成主键解决,用来确定一条数据是应该作为插入、删除还是更新记录来解决。在 Flink1.11 中,能够通过 flink-cdc-connectors 项目提供的 changelog-json format 来实现该性能。

在 Flink1.12 版本中, 新增了一个 upsert connector(upsert-kafka),该 connector 扩大自现有的 Kafka connector,工作在 upsert 模式(FLIP-149)下。新的 upsert-kafka connector 既能够作为 source 应用,也能够作为 sink 应用,并且提供了与现有的 kafka connector 雷同的基本功能和持久性保障,因为两者之间复用了大部分代码。

二 upsert kafka connector

Upsert Kafka Connector容许用户以upsert的形式从Kafka主题读取数据或将数据写入Kafka主题。

作为 source,upsert-kafka 连接器生产 changelog 流,其中每条数据记录代表一个更新或删除事件。更准确地说,数据记录中的 value 被解释为同一 key 的最后一个 value 的 UPDATE,如果有这个 key(如果不存在相应的 key,则该更新被视为 INSERT)。用表来类比,changelog 流中的数据记录被解释为 UPSERT,也称为 INSERT/UPDATE,因为任何具有相同 key 的现有行都被覆盖。另外,value 为空的消息将会被视作为 DELETE 消息。

作为 sink,upsert-kafka 连接器可以消费 changelog 流。它会将 INSERT/UPDATE_AFTER 数据作为正常的 Kafka 消息写入,并将 DELETE 数据以 value 为空的 Kafka 消息写入(表示对应 key 的消息被删除)。Flink 将根据主键列的值对数据进行分区,从而保证主键上的消息有序,因此同一主键上的更新/删除消息将落在同一分区中。

其中每条数据记录代表一个更新或删除事件,原理如下:

  • Kafka Topic中存在相应的Key,则以UPDATE操作将Key的值更新为数据记录中的Value。
  • Kafka Topic中不存在相应的Key,则以INSERT操作将Key的值写入Kafka Topic。
  • Key对应的Value为空,会被视作DELETE操作。

    三 案例

    3.1 kafka 处理后写入kafka

    3.1.1 创建kafka topic
    $ kafka-topics --create --topic user-behavior --partitions 3 --replication-factor 2 --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
    $ kafka-topics --create --topic after-user-behavior --partitions 3 --replication-factor 2 --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
    $ kafka-console-producer --topic user-behavior --broker-list cdh68:9092,cdh69:9092,cdh70:9092
    $ kafka-console-consumer --topic user-behavior --from-beginning --group test-user --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092      
    $ kafka-console-consumer --topic after-user-behavior --from-beginning --group test --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
    
    3.2 Flink SQL
    3.2.1 source
    %flink.ssql
    drop table if exists user_behavior;
    CREATE TABLE user_behavior (
        id BIGINT,
        name STRING,
        flag STRING
    ) WITH (
        'connector' = 'kafka',  -- 使用 kafka connector
        'topic' = 'user-behavior',  -- kafka topic
        'properties.group.id'='cdc', -- 消费者组
        'scan.startup.mode' = 'latest-offset',  -- 从起始 offset 开始读取
        'json.fail-on-missing-field' = 'false',
        'json.ignore-parse-errors' = 'true',
        'properties.bootstrap.servers' = 'cdh68:9092,cdh69:9092,cdh70:9092',  -- kafka broker 地址
        'format' = 'json'  -- 数据源格式为 json
    );
    
    3.2.2 sink
    %flink.ssql
    drop table if exists after_user_behavior;
    CREATE TABLE after_user_behavior (
      name STRING,
      pv BIGINT,
      PRIMARY KEY (name) NOT ENFORCED
    ) WITH (
      'connector' = 'upsert-kafka',
      'topic' = 'after-user-behavior',
      'properties.bootstrap.servers' = 'cdh68:9092,cdh69:9092,cdh70:9092',
      'value.json.fail-on-missing-field' = 'false',
      'key.json.ignore-parse-errors' = 'true',
      'key.format' = 'json',
      'value.format' = 'json'
    );
    

    一定要设置主键 Primar要使用 upsert-kafka connector,DDL语句中,一定要设置 PRIMARY KEY 主键,并为键(key.format)和值(value.format)指定序列化反序列化格式。

    当数据源端进行了增删改,对应的 pv 结果就会同步更新,这就是 upsert kafka 的魅力。

    这是基于kafka的统计计算,前提条件是 topic user-behavior中的数据是 changelog 格式的。

    3.2.3 transform
    %flink.ssql
    INSERT INTO after_user_behavior
    SELECT
      name,
      COUNT(*)
    FROM user_behavior 
    GROUP BY name;
    

    注意:after_user_behavior 必须为 upsert-kafka connector

    如果after_user_behavior为 kafka connector,执行此语句则会报如下错误:

    java.io.IOException: org.apache.flink.table.api.TableException: Table sink 'default_catalog.default_database.after_user_behavior' doesn't support consuming update changes which is produced by node GroupAggregate(groupBy=[name], select=[name, COUNT(*) AS EXPR])
    

    因为语句SELECT name, COUNT(*) FROM user_behavior GROUP BY name; 通过group by后数据是不断更新变化的,因此只能用 upsert-kafka connector。

    3.3 输出结果
    3.3.1 kafka user-behavior producer
    [song@cdh68 ~]$ kafka-console-producer --topic user-behavior --broker-list cdh68:9092,cdh69:9092,cdh70:9092
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"user","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"info","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"info","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"UPDATE","table":"user","ts":6852139698555588608}
    >{"schema":"presto","flag":false,"name":"Mars","id":"85","type":"DELETE","table":"user","ts":6852139698555588608}
    

    topic user-behavior中的数据是 changelog 格式的。

    3.3.2 kafka user-behavior consumer
    [song@cdh70 ~]$ kafka-console-consumer --topic user-behavior --group test-user --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"user","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"info","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Lucy","id":"67","type":"INSERT","table":"info","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"INSERT","table":"user","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"UPDATE","table":"user","ts":6852139698555588608}
    {"schema":"presto","flag":false,"name":"Mars","id":"85","type":"DELETE","table":"user","ts":6852139698555588608}
    
    3.3.3 kafka after-user-behavior consumer
    [song@cdh69 ~]$ kafka-console-consumer --topic after-user-behavior --group test --bootstrap-server cdh68:9092,cdh69:9092,cdh70:9092
    {"name":"Mars","pv":1}
    {"name":"Lucy","pv":1}
    {"name":"Mars","pv":2}
    {"name":"Lucy","pv":2}
    {"name":"Mars","pv":3}
    {"name":"Mars","pv":4}
    {"name":"Mars","pv":5}
    {"name":"Mars","pv":6}
    
    3.3.4 FlinkSQL user_behavior

    Flink Upsert Kafka SQL Connector 介绍,第1张

    从此结果可以看出 kafka 和 upsert-kafka 的区别:

    kafka 的结果则显示所有数据,upsert-kafka则显示更新后的最新数据。

    3.3.5 FlinkSQL alfter_user_behavior

    Flink Upsert Kafka SQL Connector 介绍,第2张

    此结果是动态变化的,变化与kafka after-user-behavior consumer相同。

    可见,upsert-kafka 表存储了所有变化的数据,但是读取时,只读取最新的数据。

    3.2 flink-pageviews-demo

    https://github.com/fsk119/flink-pageviews-demo

    3.2.1 测试数据准备

    在 Mysql 中执行以下命令:

    CREATE DATABASE flink;
    USE flink;
    CREATE TABLE users (
      user_id BIGINT,
      user_name VARCHAR(1000),
      region VARCHAR(1000)
    );
    INSERT INTO users VALUES 
    (1, 'Timo', 'Berlin'),
    (2, 'Tom', 'Beijing'),
    (3, 'Apple', 'Beijing');
    

    现在,我们利用Sql client在Flink中创建相应的表。

    CREATE TABLE users (
      user_id BIGINT,
      user_name STRING,
      region STRING
    ) WITH (
      'connector' = 'mysql-cdc',
      'hostname' = 'localhost',
      'database-name' = 'flink',
      'table-name' = 'users',
      'username' = 'root',
      'password' = '123456'
    );
    CREATE TABLE pageviews (
      user_id BIGINT,
      page_id BIGINT,
      view_time TIMESTAMP(3),
      proctime AS PROCTIME()
    ) WITH (
      'connector' = 'kafka',
      'topic' = 'pageviews',
      'properties.bootstrap.servers' = 'localhost:9092',
      'scan.startup.mode' = 'earliest-offset',
      'format' = 'json'
    );
    

    并利用Flink 往 Kafka中灌入相应的数据

    INSERT INTO pageviews VALUES
      (1, 101, TO_TIMESTAMP('2020-11-23 15:00:00')),
      (2, 104, TO_TIMESTAMP('2020-11-23 15:00:01.00'));
    
    3.2.2 将 left join 结果写入 kafka

    我们首先测试是否能将Left join的结果灌入到 Kafka 之中。

    首先,我们在 Sql client 中创建相应的表

    CREATE TABLE enriched_pageviews (
      user_id BIGINT,
      user_region STRING,
      page_id BIGINT,
      view_time TIMESTAMP(3),
      WATERMARK FOR view_time as view_time - INTERVAL '5' SECOND,
      PRIMARY KEY (user_id, page_id) NOT ENFORCED
    ) WITH (
      'connector' = 'upsert-kafka',
      'topic' = 'enriched_pageviews',
      'properties.bootstrap.servers' = 'localhost:9092',
      'key.format' = 'json',
      'value.format' = 'json'
    );
    

    并利用以下语句将left join的结果插入到kafka对应的topic之中。

    INSERT INTO enriched_pageviews
    SELECT pageviews.user_id, region, pageviews.page_id, pageviews.view_time
    FROM pageviews
    LEFT JOIN users ON pageviews.user_id = users.user_id;
    

    利用以下命令,我们可以打印topic内的数据kafka-console-consumer.sh --bootstrap-server kafka:9094 --topic "enriched_pageviews" --from-beginning --property print.key=true

    #预期结果
    {"user_id":1,"page_id":101}	{"user_id":1,"user_region":null,"page_id":101,"view_time":"2020-11-23 15:00:00"}
    {"user_id":2,"page_id":104}	{"user_id":2,"user_region":null,"page_id":104,"view_time":"2020-11-23 15:00:01"}
    {"user_id":1,"page_id":101}	null
    {"user_id":1,"page_id":101}	{"user_id":1,"user_region":"Berlin","page_id":101,"view_time":"2020-11-23 15:00:00"}
    {"user_id":2,"page_id":104}	null
    {"user_id":2,"page_id":104}	{"user_id":2,"user_region":"Beijing","page_id":104,"view_time":"2020-11-23 15:00:01"}
    

    Left join中,右流发现左流没有join上但已经发射了,此时会发送DELETE消息,而非UPDATE-BEFORE消息清理之前发送的消息。详见org.apache.flink.table.runtime.operators.join.stream.StreamingJoinOperator#processElement

    我们可以进一步在mysql中删除或者修改一些数据,来观察进一步的变化。

    UPDATE users SET region = 'Beijing' WHERE user_id = 1;
    DELETE FROM users WHERE user_id = 1;
    
    3.2.3 将聚合结果写入kafka

    我们进一步测试将聚合的结果写入到 Kafka 之中。

    在Sql client 中构建以下表

    CREATE TABLE pageviews_per_region (
      user_region STRING,
      cnt BIGINT,
      PRIMARY KEY (user_region) NOT ENFORCED
    ) WITH (
      'connector' = 'upsert-kafka',
      'topic' = 'pageviews_per_region',
      'properties.bootstrap.servers' = 'localhost:9092',
      'key.format' = 'json',
      'value.format' = 'json'
    )
    

    我们再用以下命令将数据插入到upsert-kafka之中。

    INSERT INTO pageviews_per_region
    SELECT
      user_region,
      COUNT(*)
    FROM enriched_pageviews
    WHERE user_region is not null
    GROUP BY user_region;
    

    我们可以通过以下命令查看 Kafka 中对应的数据

    ./kafka-console-consumer.sh --bootstrap-server kafka:9094 --topic "pageviews_per_region" --from-beginning --property print.key=true
    # 预期结果
    {"user_region":"Berlin"}	{"user_region":"Berlin","cnt":1}
    {"user_region":"Beijing"}	{"user_region":"Beijing","cnt":1}
    {"user_region":"Berlin"}	null
    {"user_region":"Beijing"}	{"user_region":"Beijing","cnt":2}
    {"user_region":"Beijing"}	{"user_region":"Beijing","cnt":1}
    

    Flink Upsert Kafka SQL Connector 介绍,欢迎关注微信公众号:大数据AI,第3张