跳表(Skip List)是一种概率性数据结构,它通过在普通有序链表的基础上增加多级索引层来实现快速的查找、插入和删除操作。跳表的效率可以与平衡树相媲美,其操作的时间复杂度也是O(log n),但跳表的结构更简单,更易于实现。
跳表通过简单的随机化过程来避免复杂的重平衡操作,使得它成为一种既高效又易于实现的数据结构选项。
import java.util.Random; class SkipListNode { int value; SkipListNode[] forward; // 指向不同层的指针数组 public SkipListNode(int value, int level) { this.value = value; this.forward = new SkipListNode[level + 1]; } } public class SkipList { private static final float P = 0.5f; private static final int MAX_LEVEL = 16; private SkipListNode head; private int level; private Random random; public SkipList() { level = 0; head = new SkipListNode(0, MAX_LEVEL); random = new Random(); } // 随机生成节点的层数 private int randomLevel() { int lvl = 1; while (random.nextFloat() < P && lvl < MAX_LEVEL) { lvl++; } return lvl; } // 插入节点 public void insert(int value) { int lvl = randomLevel(); SkipListNode newNode = new SkipListNode(value, lvl); SkipListNode current = head; SkipListNode[] update = new SkipListNode[MAX_LEVEL + 1]; for (int i = level; i >= 0; i--) { while (current.forward[i] != null && current.forward[i].value < value) { current = current.forward[i]; } update[i] = current; } for (int i = 0; i <= lvl; i++) { newNode.forward[i] = update[i].forward[i]; update[i].forward[i] = newNode; } if (lvl > level) { level = lvl; } } // 查找节点 public boolean search(int value) { SkipListNode current = head; for (int i = level; i >= 0; i--) { while (current.forward[i] != null && current.forward[i].value < value) { current = current.forward[i]; } } current = current.forward[0]; return current != null && current.value == value; } // 删除节点 public void delete(int value) { SkipListNode[] update = new SkipListNode[MAX_LEVEL + 1]; SkipListNode current = head; for (int i = level; i >= 0; i--) { while (current.forward[i] != null && current.forward[i].value < value) { current = current.forward[i]; } update[i] = current; } current = current.forward[0]; if (current.value == value) { for (int i = 0; i <= level; i++) { if (update[i].forward[i] != current) break; update[i].forward[i] = current.forward[i]; } while (level > 0 && head.forward[level] == null) { level--; } } } // 打印跳表的内容 public void display() { System.out.println("SkipList: "); for (int i = 0; i <= level; i++) { SkipListNode node = head.forward[i]; System.out.print("Level " + i + ": "); while (node != null) { System.out.print(node.value + " "); node = node.forward[i]; } System.out.println(); } } } // 使用示例 public class Main { public static void main(String[] args) { SkipList list = new SkipList(); list.insert(3); list.insert(6); list.insert(7); list.insert(9); list.insert(12); list.insert(19); list.insert(17); list.display(); System.out.println("Searching 6: " + list.search(6)); System.out.println("Searching 15: " + list.search(15)); list.delete(6); System.out.println("After deleting 6: "); list.display(); } }
这段代码首先定义了SkipListNode类,它是跳表节点的结构,包括节点值和一个数组forward,数组中每个元素是对应层级的下一个节点的引用。SkipList类实现了跳表,包括初始化、插入、查找、删除和打印跳表的方法。
假设我们有一个跳表,它当前的状态如下,其中每一行代表一个层级(层级0是最底层,包含所有元素):
层级3:1 --------------------------------> 9 层级2:1 ------------> 5 ------------> 9 层级1:1 ----> 3 ----> 5 ----> 7 ----> 9 层级0:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 9
现在,我们想要插入一个新的节点,值为8,并假设通过随机过程,决定新节点8将出现在层级0、1和2上(不出现在层级3上)。下面是插入过程的步骤:
从跳表的最高层(在这个例子中是层级3)开始寻找,直到找到比插入值小的最大节点。因为8不会被插入到层级3,我们直接从层级2开始:
插入8后,跳表变为:
层级3:1 --------------------------------> 9 层级2:1 ------------> 5 -------> 8 ----> 9 层级1:1 ----> 3 ----> 5 ----> 7 -> 8 -> 9 层级0:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9
在这个例子中,新插入的节点8并没有增加跳表的总层数,因此不需要调整。
通过这个例子,你可以看到插入过程如何在每一层找到正确的插入位置,并更新指针来维护跳表的结构。这个过程确保了跳表的搜索效率,使得搜索、插入和删除操作的时间复杂度都为O(log n)。