相关推荐recommended
(17)Hive ——MR任务的map与reduce个数由什么决定?
作者:mmseoamin日期:2024-03-20

一、MapTask的数量由什么决定?

    MapTask的数量由以下参数决定

  • 文件个数
  • 文件大小
  • blocksize

     一般而言,对于每一个输入的文件会有一个map split,每一个分片会开启一个map任务,很容易导致小文件问题(如果不进行小文件合并,极可能导致Hadoop集群资源雪崩)

    hive中小文件产生的原因及解决方案见文章:

    (14)Hive调优——合并小文件-CSDN博客文章浏览阅读779次,点赞10次,收藏17次。Hive的小文件问题(17)Hive ——MR任务的map与reduce个数由什么决定?,第1张https://blog.csdn.net/SHWAITME/article/details/136108785

    maxSize的默认值为256M,minSize的默认值是1byte,切片大小splitSize的计算公式:

    splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(256M,Max(1 byte ,128M)) = 128M =blockSize

    所以默认splitSize就等于blockSize块大小

    (17)Hive ——MR任务的map与reduce个数由什么决定?,第2张

    # minSize的默认值是1byte
    set mapred.min.split.size=1
    #maxSize的默认值为256M
    set mapred.max.split.size=256000000
    #hive.input.format是用来指定输入格式的参数。决定了Hive读取数据时使用的输入格式,
    set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
    

    二、如何调整MapTask的数量

      假设blockSize一直是128M,且splitSize = blockSize = 128M。在不改变blockSize块大小的情况下,如何增加/减少mapTask数量

    2.1 增加map的数量

          增加map:需要调小maxSize,且要小于blockSize才有效,例如maxSize调成100byte

          splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(100,Max(1,128*1000*1000)) =100 byte = maxSize

       调整前的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 128M

       调整后的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 100byte

    2.2 减少map的数量 

         减少map:需要调大minSize ,且要大于blockSize才有效,例如minSize 调成200M

          splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(256m, Max(200M,128M)) = 200M=minSize

       调整前的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 128M

       调整后的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 200M

    三、ReduceTask的数量决定

        reduce的个数决定hdfs上落地文件的个数(即: reduce个数决定文件的输出个数)。 ReduceTask的数量,由参数mapreduce.job.reduces 控制,默认值为 -1 时,代表ReduceTask的数量是根据hive的数据量动态计算的。

    (17)Hive ——MR任务的map与reduce个数由什么决定?,第3张

    总体而言,ReduceTask的数量决定方式有以下两种:

    3.1 方式一:hive动态计算

    3.1.1 动态计算公式

     ReduceTask数量 = min (参数2,输入的总数据量/ 参数1)

    参数1:hive.exec.reducers.bytes.per.reducer 

          含义:每个reduce任务处理的数据量(默认值:256M)

    参数2:hive.exec.reducers.max 

         含义:每个MR任务能开启的reduce任务数的上限值(默认值:1009个)

    ps: 一般参数2的值不会轻易变动,因此在普通集群规模下,hive根据数据量动态计算reduce的个数,计算公式为:输入总数据量/hive.exec.reducers.bytes.per.reducer

    3.1.2 源码分析

    (1)通过源码分析 hive是如何动态计算reduceTask的个数的?

    	在org.apache.hadoop.hive.ql.exec.mr包下的 MapRedTask类中
    	//方法类调用逻辑
    	MapRedTask 
    	     | ----setNumberOfReducers 
    	                  | ---- estimateNumberOfReducers
    	                    		 |---- estimateReducers         
    

    (2)核心方法setNumberOfReducers(读取 用户手动设置的reduce个数)

      /**
       * Set the number of reducers for the mapred work.
       */
      private void setNumberOfReducers() throws IOException {
        ReduceWork rWork = work.getReduceWork();
        // this is a temporary hack to fix things that are not fixed in the compiler
        // 获取通过外部传参设置reduce数量的值 rWork.getNumReduceTasks() 
        Integer numReducersFromWork = rWork == null ? 0 : rWork.getNumReduceTasks();
        if (rWork == null) {
          console
              .printInfo("Number of reduce tasks is set to 0 since there's no reduce operator");
        } else {
           
          if (numReducersFromWork >= 0) {
          //如果手动设置了reduce的数量 大于等于0 ,则进来,控制台打印日志
            console.printInfo("Number of reduce tasks determined at compile time: "
                + rWork.getNumReduceTasks());
          } else if (job.getNumReduceTasks() > 0) {
          //如果手动设置了reduce的数量,获取配置中的值,并传入到work中
            int reducers = job.getNumReduceTasks();
            rWork.setNumReduceTasks(reducers);
            console
                .printInfo("Number of reduce tasks not specified. Defaulting to jobconf value of: "
                + reducers);
          } else {
           //如果没有手动设置reduce的数量,进入方法
            if (inputSummary == null) {
              inputSummary =  Utilities.getInputSummary(driverContext.getCtx(), work.getMapWork(), null);
            }
       // #==========【重中之中】estimateNumberOfReducers 
            int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),
               work.isFinalMapRed());
            rWork.setNumReduceTasks(reducers);
            console
                .printInfo("Number of reduce tasks not specified. Estimated from input data size: "
                + reducers);
          }
          
          //hive shell中所看到的控制台打印日志就在这里
          console
              .printInfo("In order to change the average load for a reducer (in bytes):");
          console.printInfo("  set " + HiveConf.ConfVars.BYTESPERREDUCER.varname
              + "=");
          console.printInfo("In order to limit the maximum number of reducers:");
          console.printInfo("  set " + HiveConf.ConfVars.MAXREDUCERS.varname
              + "=");
          console.printInfo("In order to set a constant number of reducers:");
          console.printInfo("  set " + HiveConf.ConfVars.HADOOPNUMREDUCERS
              + "=");
        }
      }
    

     (3)如果没有手动设置reduce的个数,hive是如何动态计算reduce个数的?

        int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),
               work.isFinalMapRed());
               
      /**
       * Estimate the number of reducers needed for this job, based on job input,
       * and configuration parameters.
       *
       * The output of this method should only be used if the output of this
       * MapRedTask is not being used to populate a bucketed table and the user
       * has not specified the number of reducers to use.
       *
       * @return the number of reducers.
       */
      public static int estimateNumberOfReducers(HiveConf conf, ContentSummary inputSummary,
                                                 MapWork work, boolean finalMapRed) throws IOException {
        // bytesPerReducer 每个reduce处理的数据量,默认值为256M  BYTESPERREDUCER("hive.exec.reducers.bytes.per.reducer", 256000000L)
        long bytesPerReducer = conf.getLongVar(HiveConf.ConfVars.BYTESPERREDUCER);
        
        //整个mr任务,可以开启的reduce个数的上限值:maxReducers的默认值1009个MAXREDUCERS("hive.exec.reducers.max", 1009)
        int maxReducers = conf.getIntVar(HiveConf.ConfVars.MAXREDUCERS);
       
       //#===========对totalInputFileSize的计算
        double samplePercentage = getHighestSamplePercentage(work);
        long totalInputFileSize = getTotalInputFileSize(inputSummary, work, samplePercentage);
        // if all inputs are sampled, we should shrink the size of reducers accordingly.
        if (totalInputFileSize != inputSummary.getLength()) {
          LOG.info("BytesPerReducer=" + bytesPerReducer + " maxReducers="
              + maxReducers + " estimated totalInputFileSize=" + totalInputFileSize);
        } else {
          LOG.info("BytesPerReducer=" + bytesPerReducer + " maxReducers="
            + maxReducers + " totalInputFileSize=" + totalInputFileSize);
        }
        // If this map reduce job writes final data to a table and bucketing is being inferred,
        // and the user has configured Hive to do this, make sure the number of reducers is a
        // power of two
        boolean powersOfTwo = conf.getBoolVar(HiveConf.ConfVars.HIVE_INFER_BUCKET_SORT_NUM_BUCKETS_POWER_TWO) &&
            finalMapRed && !work.getBucketedColsByDirectory().isEmpty();
        
        //#==============【真正计算reduce个数的方法】看源码的技巧return的方法是重要核心方法
        return estimateReducers(totalInputFileSize, bytesPerReducer, maxReducers, powersOfTwo);
      } 
    

    (4) 动态计算reduce个数的方法 estimateReducers

    	public static int estimateReducers(long totalInputFileSize, long bytesPerReducer,
          int maxReducers, boolean powersOfTwo) {
        
      
        double bytes = Math.max(totalInputFileSize, bytesPerReducer);
      // 假设totalInputFileSize 1000M
        // bytes=Math.max(1000M,256M)=1000M
        int reducers = (int) Math.ceil(bytes / bytesPerReducer);
        
        //reducers=(int)Math.ceil(1000M/256M)=4  此公式说明如果totalInputFileSize 小于256M ,则reducers=1 ;也就是当输入reduce端的数据量特别小,即使手动设置reduce Task数量为5,最终也只会开启1个reduceTask
        
      
        reducers = Math.max(1, reducers);
      //Math.max(1, 4)=4 ,reducers的结果还是4
        reducers = Math.min(maxReducers, reducers);
        //Math.min(1009,4)=4; reducers的结果还是4
          
        int reducersLog = (int)(Math.log(reducers) / Math.log(2)) + 1;
        int reducersPowerTwo = (int)Math.pow(2, reducersLog);
        if (powersOfTwo) {
          // If the original number of reducers was a power of two, use that
          if (reducersPowerTwo / 2 == reducers) {
            // nothing to do
          } else if (reducersPowerTwo > maxReducers) {
            // If the next power of two greater than the original number of reducers is greater
            // than the max number of reducers, use the preceding power of two, which is strictly
            // less than the original number of reducers and hence the max
            reducers = reducersPowerTwo / 2;
          } else {
            // Otherwise use the smallest power of two greater than the original number of reducers
            reducers = reducersPowerTwo;
          }
        }
        return reducers;
      }
    

    3.2 方式二:用户手动指定

     手动调整reduce个数: set mapreduce.job.reduces = 10

     需要注意:出现以下几种情况时,手动调整reduce个数不生效。

    3.2.1 order by 全局排序

       sql中使用了order by全局排序,那只能在一个reduce中完成,无论怎么调整reduce的数量都是无效的。

      
      hive (default)>set mapreduce.job.reduces=5;
      hive (default)> select * from empt order  by length(ename);
      Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
    

    3.2.2 map端输出的数据量很小

    在【3.1.2 源码分析——(4) 】动态计算reduce个数的核心方法 estimateReducers中,有下面这三行代码:

    int reducers = (int) Math.ceil(bytes / bytesPerReducer);
    reducers = Math.max(1, reducers);
    reducers = Math.min(maxReducers, reducers);
    

       如果map端输出的数据量bytes (假如只有1M) 远小于hive.exec.reducers.bytes.per.reducer (每个reduce处理的数据量默认值为256M) 参数值,maxReducers默认为1009个,计算下列值:

      int reducers  = (int) Math.ceil(1 / 256M)=1;
      reducers = Math.max(1, 1)=1;
      reducers = Math.min(1009, 1)=1;
    

      此时即使用户手动 set mapreduce.job.reduces=10,也不生效,reduce个数最后还是只有1个。

    参考文章:

    Hive mapreduce的map与reduce个数由什么决定?_hive中map任务和reduce任务数量计算原理-CSDN博客