二叉树:数据结构中的灵魂
作者:mmseoamin日期:2024-04-01

  • 💓 博客主页:江池俊的博客
  • ⏩ 收录专栏:数据结构冒险记
  • 👉专栏推荐:✅cpolar ✅C语言进阶之路
  • 💻代码仓库:江池俊的代码仓库
  • 🔥编译环境:Visual Studio 2022
  • 🎉欢迎大家点赞👍评论📝收藏⭐

    二叉树:数据结构中的灵魂,在这里插入图片描述,第1张

    文章目录

      • 一、树概念及结构
        • 1.1 树的概念
        • 1.2 树的相关概念
        • 1.3 树的表示
        • 1.4 树在实际中的运用(表示文件系统的目录树结构)
        • 二、二叉树概念及结构
          • 2.1 概念
          • 2.2 特殊的二叉树:
          • 2.3 二叉树的性质
          • 2.4 二叉树的存储结构
            • 1. 顺序存储
            • 2. 链式存储

              一、树概念及结构

              1.1 树的概念

              树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

              • 有一个特殊的结点,称为根结点,根节点没有前驱结点
              • 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
              • 因此,树是递归定义的

                二叉树:数据结构中的灵魂,在这里插入图片描述,第2张

                二叉树:数据结构中的灵魂,在这里插入图片描述,第3张

                注意:树形结构中,子树之间不能有交集,否则就不是树形结构

                二叉树:数据结构中的灵魂,在这里插入图片描述,第4张

                1.2 树的相关概念

                二叉树:数据结构中的灵魂,在这里插入图片描述,第5张

                • 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
                • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
                • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
                • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;如上图:A是B的父节点
                • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:B是A的孩子节点
                • 兄弟节点:具有相同父节点的节点互称为兄弟节点;如上图:B、C是兄弟节点
                • 树的度:一棵树中,最大的节点的度称为树的度;如上图:树的度为6
                • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
                • 树的高度或深度:树中节点的最大层次;如上图:树的高度为4
                • 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
                • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
                • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
                • 森林:由m(m>0)棵互不相交的树的集合称为森林;

                  1.3 树的表示

                  树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

                  typedef int DataType;
                  struct Node
                  {
                   struct Node* _firstChild1; // 第一个孩子结点
                   struct Node* _pNextBrother; // 指向其下一个兄弟结点
                   DataType _data; // 结点中的数据域
                  };
                  

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第6张

                  1.4 树在实际中的运用(表示文件系统的目录树结构)

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第7张


                  二、二叉树概念及结构

                  2.1 概念

                  一棵二叉树是结点的一个有限集合,该集合:

                  1. 或者为空
                  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第8张

                  从上图可以看出:

                  1. 二叉树不存在度大于2的结点
                  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

                  注意:对于任意的二叉树都是由以下几种情况复合而成的:

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第9张

                  2.2 特殊的二叉树:

                  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2k - 1,则它就是满二叉树。
                  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

                    二叉树:数据结构中的灵魂,在这里插入图片描述,第10张

                  2.3 二叉树的性质

                  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2(i-1) 个结点.
                  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2h - 1.
                  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为n2 ,则有 n0 = n2+1
                  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log2(n+1). (ps:log2(n+1) 是log以2为底,n+1为对数)
                  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对

                    于序号为i的结点有:

                    1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
                    2. 若2i+1=n否则无左孩子
                    3. 若2i+2=n否则无右孩子

                  【例题】

                  1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
                  A 不存在这样的二叉树
                  B 200
                  C 198
                  D 199
                  2.下列数据结构中,不适合采用顺序存储结构的是( )
                  A 非完全二叉树
                  B 堆
                  C 队列
                  D 栈
                  3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
                  A n
                  B n+1
                  C n-1
                  D n/2
                  4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
                  A 11
                  B 10
                  C 8
                  D 12
                  5.一个具有767个节点的完全二叉树,其叶子节点个数为()
                  A 383
                  B 384
                  C 385
                  D 386
                  答案:
                  1.B
                  我们知道二叉树的结点数为 399,其中有 199 个度为 2 的结点。那么剩下的结点数就是 399-199 =200,这些结点构成了叶子。
                  所以该二叉树中的叶子结点数为 200,答案是 B.
                  2.A
                  在数据结构中,顺序存储结构主要通过数组形式保存数据,并按照一定的顺序进行存储。
                  然而,不同的数据结构适应的顺序存储方式可能不同。
                  对于非完全二叉树来说,由于其可能存在空间的浪费,一般只适合采用顺序存储表示完全二叉树。
                  另一方面,堆、队列以及栈都可以使用顺序存储结构来进行存储。
                  所以,不适合采用顺序存储结构的数据结构是A. 非完全二叉树。
                  3.A
                  4.B
                  完全二叉树是一种特殊的二叉树,其中除了最后一层外,其他层的结点数都达到最大,且最后一层的结点都连续集中在最左边。
                  对于一棵具有n个结点的完全二叉树,其高度为:
                  h = log2(n+1)
                  因此,当n=531时,高度h为:
                  h = log2(531+1) = log2(532) > 9 且  log2(532) < 10
                  故 h应该等于10
                  所以答案为B。
                  5.B
                  

                  2.4 二叉树的存储结构

                  二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

                  1. 顺序存储

                  顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆下一篇我会为大家专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第11张

                  2. 链式存储

                  二叉树的链式存储结构是指:用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面学到高阶数据结构如红黑树等会用到三叉链。

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第12张

                  二叉树:数据结构中的灵魂,在这里插入图片描述,第13张

                  typedef int BTDataType;
                  // 二叉链
                  struct BinaryTreeNode
                  {
                  	 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
                  	 struct BinTreeNode* _pRight; // 指向当前节点右孩子
                  	 BTDataType _data; // 当前节点值域
                  }
                  // 三叉链
                  struct BinaryTreeNode
                  {
                  	 struct BinTreeNode* _pParent; // 指向当前节点的双亲
                  	 struct BinTreeNode* _pLeft; // 指向当前节点左孩子
                  	 struct BinTreeNode* _pRight; // 指向当前节点右孩子
                  	 BTDataType _data; // 当前节点值域
                  };
                  

                  此处我仅给大家简单介绍了一下二叉树的一些该概念和性质,后续树的详细知识点也将就此展开!