初级爬虫实战——麻省理工学院新闻
作者:mmseoamin日期:2024-04-01

文章目录

  • 发现宝藏
  • 一、 目标
  • 二、 浅析
  • 三、获取所有模块
  • 四、请求处理模块、版面、文章
    • 1. 分析切换页面的参数传递
    • 2. 获取共有多少页标签并遍历版面
    • 3.解析版面并保存版面信息
    • 4. 解析文章列表和文章
    • 5. 清洗文章
    • 6. 保存文章图片
    • 五、完整代码
    • 六、效果展示

      发现宝藏

      前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【宝藏入口】。

      一、 目标

      爬取news.mit.edu的字段,包含标题、内容,作者,发布时间,链接地址,文章快照 (可能需要翻墙才能访问)

      二、 浅析

      1.全部新闻大致分为4个模块

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第1张

      2.每个模块的标签列表大致如下

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第2张

      3.每个标签对应的文章列表大致如下

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第3张

      4.具体每篇文章对应的结构如下

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第4张

      三、获取所有模块

      其实就四个模块,列举出来就好,然后对每个分别解析爬取每个模块

      class MitnewsScraper:
          def __init__(self, root_url, model_url, img_output_dir):
              self.root_url = root_url
              self.model_url = model_url
              self.img_output_dir = img_output_dir
              self.headers = {
                  'Referer': 'https://news.mit.edu/',
                  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
                                'Chrome/122.0.0.0 Safari/537.36',
                  'Cookie': '替换成你自己的',
              }
              ...
      def run():
          root_url = 'https://news.mit.edu/'
          model_urls = ['https://news.mit.edu/topic', 'https://news.mit.edu/clp',
                        'https://news.mit.edu/department', 'https://news.mit.edu/']
          output_dir = 'D:\imgs\mit-news'
          for model_url in model_urls:
              scraper = MitnewsScraper(root_url, model_url, output_dir)
              scraper.catalogue_all_pages()
      

      四、请求处理模块、版面、文章

      先处理一个模块(TOPICS)

      1. 分析切换页面的参数传递

      如图可知是get请求,需要传一个参数page

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第5张

      2. 获取共有多少页标签并遍历版面

      实际上是获取所有的page参数,然后进行遍历获取所有的标签

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第6张

       # 获取一个模块有多少版面
          def catalogue_all_pages(self):
              response = requests.get(self.model_url, headers=self.headers)
              soup = BeautifulSoup(response.text, 'html.parser')
              try:
                  match = re.search(r'of (\d+) topics', soup.text)
                  total_catalogues = int(match.group(1))
                  total_pages = math.ceil(total_catalogues / 20)
                  print('topics模块一共有' + match.group(1) + '个版面,' + str(total_pages) + '页数据')
                  for page in range(0, total_pages):
                      self.parse_catalogues(page)
                      print(f"========Finished catalogues page {page + 1}========")
              except:
                  self.parse_catalogues(0)
      

      3.解析版面并保存版面信息

      前三个模块的版面列表

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第7张

      第四个模块的版面列表

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第8张

       # 解析版面列表里的版面
          def parse_catalogues(self, page):
              params = {'page': page}
              response = requests.get(self.model_url, params=params, headers=self.headers)
              if response.status_code == 200:
                  soup = BeautifulSoup(response.text, 'html.parser')
                  if self.root_url == self.model_url:
                      catalogue_list = soup.find('div',
                                                 'site-browse--recommended-section site-browse--recommended-section--schools')
                      catalogues_list = catalogue_list.find_all('li')
                  else:
                      catalogue_list = soup.find('ul', 'page-vocabulary--views--list')
                      catalogues_list = catalogue_list.find_all('li')
                  for index, catalogue in enumerate(catalogues_list):
                      # 操作时间
                      date = datetime.now()
                      # 版面标题
                      catalogue_title = catalogue.find('a').get_text(strip=True)
                      print('第' + str(index + 1) + '个版面标题为:' + catalogue_title)
                      catalogue_href = catalogue.find('a').get('href')
                      # 版面id
                      catalogue_id = catalogue_href[1:]
                      catalogue_url = self.root_url + catalogue_href
                      print('第' + str(index + 1) + '个版面地址为:' + catalogue_url)
                      # 根据版面url解析文章列表
                      response = requests.get(catalogue_url, headers=self.headers)
                      soup = BeautifulSoup(response.text, 'html.parser')
                      match = re.search(r'of (\d+)', soup.text)
                      # 查找一个版面有多少篇文章
                      total_cards = int(match.group(1))
                      total_pages = math.ceil(total_cards / 15)
                      print(f'{catalogue_title}版面一共有{total_cards}篇文章,' + f'{total_pages}页数据')
                      for page in range(0, total_pages):
                          self.parse_cards_list(page, catalogue_url, catalogue_id)
                          print(f"========Finished {catalogue_title} 版面 page {page + 1}========")
                      # 连接 MongoDB 数据库服务器
                      client = MongoClient('mongodb://localhost:27017/')
                      # 创建或选择数据库
                      db = client['mit-news']
                      # 创建或选择集合
                      catalogues_collection = db['catalogues']
                      # 插入示例数据到 catalogues 集合
                      catalogue_data = {
                          'id': catalogue_id,
                          'date': date,
                          'title': catalogue_title,
                          'url': catalogue_url,
                          'cardSize': total_cards
                      }
                      catalogues_collection.insert_one(catalogue_data)
                  return True
              else:
                  raise Exception(f"Failed to fetch page {page}. Status code: {response.status_code}")
      

      4. 解析文章列表和文章

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第9张

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第10张

      寻找冗余部分并删除,例如

      初级爬虫实战——麻省理工学院新闻,在这里插入图片描述,第11张

       # 解析文章列表里的文章
          def parse_cards_list(self, page, url, catalogue_id):
              params = {'page': page}
              response = requests.get(url, params=params, headers=self.headers)
              if response.status_code == 200:
                  soup = BeautifulSoup(response.text, 'html.parser')
                  card_list = soup.find('div', 'page-term--views--list')
                  cards_list = card_list.find_all('div', 'page-term--views--list-item')
                  for index, card in enumerate(cards_list):
                      # 对应的版面id
                      catalogue_id = catalogue_id
                      # 操作时间
                      date = datetime.now()
                      # 文章标题
                      card_title = card.find('a', 'term-page--news-article--item--title--link').find('span').get_text(
                          strip=True)
                      # 文章简介
                      card_introduction = card.find('p', 'term-page--news-article--item--dek').find('span').get_text(
                          strip=True)
                      # 文章更新时间
                      publish_time = card.find('p', 'term-page--news-article--item--publication-date').find('time').get(
                          'datetime')
                      updateTime = datetime.strptime(publish_time, '%Y-%m-%dT%H:%M:%SZ')
                      # 文章地址
                      temp_url = card.find('div', 'term-page--news-article--item--cover-image').find('a').get('href')
                      url = 'https://news.mit.edu' + temp_url
                      # 文章id
                      pattern = r'(\w+(-\w+)*)-(\d+)'
                      match = re.search(pattern, temp_url)
                      card_id = str(match.group(0))
                      card_response = requests.get(url, headers=self.headers)
                      soup = BeautifulSoup(card_response.text, 'html.parser')
                      # 原始htmldom结构
                      html_title = soup.find('div', id='block-mit-page-title')
                      html_content = soup.find('div', id='block-mit-content')
                      # 合并标题和内容
                      html_title.append(html_content)
                      html_cut1 = soup.find('div', 'news-article--topics')
                      html_cut2 = soup.find('div', 'news-article--archives')
                      html_cut3 = soup.find('div', 'news-article--content--side-column')
                      html_cut4 = soup.find('div', 'news-article--press-inquiries')
                      html_cut5 = soup.find_all('div', 'visually-hidden')
                      html_cut6 = soup.find('p', 'news-article--images-gallery--nav--inner')
                      # 移除元素
                      if html_cut1:
                          html_cut1.extract()
                      if html_cut2:
                          html_cut2.extract()
                      if html_cut3:
                          html_cut3.extract()
                      if html_cut4:
                          html_cut4.extract()
                      if html_cut5:
                          for item in html_cut5:
                              item.extract()
                      if html_cut6:
                          html_cut6.extract()
                      # 获取合并后的内容文本
                      html_content = html_title
                      # 文章作者
                      author_list = html_content.find('div', 'news-article--authored-by').find_all('span')
                      author = ''
                      for item in author_list:
                          author = author + item.get_text()
                      # 增加保留html样式的源文本
                      origin_html = html_content.prettify()  # String
                      # 转义网页中的图片标签
                      str_html = self.transcoding_tags(origin_html)
                      # 再包装成
                      temp_soup = BeautifulSoup(str_html, 'html.parser')
                      # 反转译文件中的插图
                      str_html = self.translate_tags(temp_soup.text)
                      # 绑定更新内容
                      content = self.clean_content(str_html)
                      # 下载图片
                      imgs = []
                      img_array = soup.find_all('div', 'news-article--image-item')
                      for item in img_array:
                          img_url = self.root_url + item.find('img').get('data-src')
                          imgs.append(img_url)
                      if len(imgs) != 0:
                          # 下载图片
                          illustrations = self.download_images(imgs, card_id)
                      # 连接 MongoDB 数据库服务器
                      client = MongoClient('mongodb://localhost:27017/')
                      # 创建或选择数据库
                      db = client['mit-news']
                      # 创建或选择集合
                      cards_collection = db['cards']
                      # 插入示例数据到 catalogues 集合
                      card_data = {
                          'id': card_id,
                          'catalogueId': catalogue_id,
                          'type': 'mit-news',
                          'date': date,
                          'title': card_title,
                          'author': author,
                          'card_introduction': card_introduction,
                          'updatetime': updateTime,
                          'url': url,
                          'html_content': str(html_content),
                          'content': content,
                          'illustrations': illustrations,
                      }
                      cards_collection.insert_one(card_data)
                  return True
              else:
                  raise Exception(f"Failed to fetch page {page}. Status code: {response.status_code}")
      

      5. 清洗文章

       # 工具 转义标签
          def transcoding_tags(self, htmlstr):
              re_img = re.compile(r'\s*<(img.*?)>\s*', re.M)
              s = re_img.sub(r'\n @@##\1##@@ \n', htmlstr)  # IMG 转义
              return s
          # 工具 转义标签
          def translate_tags(self, htmlstr):
              re_img = re.compile(r'@@##(img.*?)##@@', re.M)
              s = re_img.sub(r'<>', htmlstr)  # IMG 转义
              return s
          # 清洗文章
          def clean_content(self, content):
              if content is not None:
                  content = re.sub(r'\r', r'\n', content)
                  content = re.sub(r'\n{2,}', '', content)
                  content = re.sub(r' {6,}', '', content)
                  content = re.sub(r' {3,}\n', '', content)
                  content = re.sub(r'初级爬虫实战——麻省理工学院新闻,第12张', '', content)
                  content = content.replace(
                      '初级爬虫实战——麻省理工学院新闻,第13张 ', '')
                  content = content.replace(
                      ''' e}')
                      except Exception as e:
                          print(f'保存图片时发生错误:{e}')
                  return downloaded_images
              # 如果文件夹存在则跳过
              else:
                  print(f'文章id为{card_id}的图片文件夹已经存在')
                  return []
      

      五、完整代码

      import os
      from datetime import datetime
      import requests
      from bs4 import BeautifulSoup
      from pymongo import MongoClient
      import re
      import math
      class MitnewsScraper:
          def __init__(self, root_url, model_url, img_output_dir):
              self.root_url = root_url
              self.model_url = model_url
              self.img_output_dir = img_output_dir
              self.headers = {
                  'Referer': 'https://news.mit.edu/',
                  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) '
                                'Chrome/122.0.0.0 Safari/537.36',
                  'Cookie': '替换成你自己的'
              }
          # 获取一个模块有多少版面
          def catalogue_all_pages(self):
              response = requests.get(self.model_url, headers=self.headers)
              soup = BeautifulSoup(response.text, 'html.parser')
              try:
                  match = re.search(r'of (\d+) topics', soup.text)
                  total_catalogues = int(match.group(1))
                  total_pages = math.ceil(total_catalogues / 20)
                  print('topics模块一共有' + match.group(1) + '个版面,' + str(total_pages) + '页数据')
                  for page in range(0, total_pages):
                      self.parse_catalogues(page)
                      print(f"========Finished catalogues page {page + 1}========")
              except:
                  self.parse_catalogues(0)
          # 解析版面列表里的版面
          def parse_catalogues(self, page):
              params = {'page': page}
              response = requests.get(self.model_url, params=params, headers=self.headers)
              if response.status_code == 200:
                  soup = BeautifulSoup(response.text, 'html.parser')
                  if self.root_url == self.model_url:
                      catalogue_list = soup.find('div',
                                                 'site-browse--recommended-section site-browse--recommended-section--schools')
                      catalogues_list = catalogue_list.find_all('li')
                  else:
                      catalogue_list = soup.find('ul', 'page-vocabulary--views--list')
                      catalogues_list = catalogue_list.find_all('li')
                  for index, catalogue in enumerate(catalogues_list):
                      # 操作时间
                      date = datetime.now()
                      # 版面标题
                      catalogue_title = catalogue.find('a').get_text(strip=True)
                      print('第' + str(index + 1) + '个版面标题为:' + catalogue_title)
                      catalogue_href = catalogue.find('a').get('href')
                      # 版面id
                      catalogue_id = catalogue_href[1:]
                      catalogue_url = self.root_url + catalogue_href
                      print('第' + str(index + 1) + '个版面地址为:' + catalogue_url)
                      # 根据版面url解析文章列表
                      response = requests.get(catalogue_url, headers=self.headers)
                      soup = BeautifulSoup(response.text, 'html.parser')
                      match = re.search(r'of (\d+)', soup.text)
                      # 查找一个版面有多少篇文章
                      total_cards = int(match.group(1))
                      total_pages = math.ceil(total_cards / 15)
                      print(f'{catalogue_title}版面一共有{total_cards}篇文章,' + f'{total_pages}页数据')
                      for page in range(0, total_pages):
                          self.parse_cards_list(page, catalogue_url, catalogue_id)
                          print(f"========Finished {catalogue_title} 版面 page {page + 1}========")
                      # 连接 MongoDB 数据库服务器
                      client = MongoClient('mongodb://localhost:27017/')
                      # 创建或选择数据库
                      db = client['mit-news']
                      # 创建或选择集合
                      catalogues_collection = db['catalogues']
                      # 插入示例数据到 catalogues 集合
                      catalogue_data = {
                          'id': catalogue_id,
                          'date': date,
                          'title': catalogue_title,
                          'url': catalogue_url,
                          'cardSize': total_cards
                      }
                      catalogues_collection.insert_one(catalogue_data)
                  return True
              else:
                  raise Exception(f"Failed to fetch page {page}. Status code: {response.status_code}")
          # 解析文章列表里的文章
          def parse_cards_list(self, page, url, catalogue_id):
              params = {'page': page}
              response = requests.get(url, params=params, headers=self.headers)
              if response.status_code == 200:
                  soup = BeautifulSoup(response.text, 'html.parser')
                  card_list = soup.find('div', 'page-term--views--list')
                  cards_list = card_list.find_all('div', 'page-term--views--list-item')
                  for index, card in enumerate(cards_list):
                      # 对应的版面id
                      catalogue_id = catalogue_id
                      # 操作时间
                      date = datetime.now()
                      # 文章标题
                      card_title = card.find('a', 'term-page--news-article--item--title--link').find('span').get_text(
                          strip=True)
                      # 文章简介
                      card_introduction = card.find('p', 'term-page--news-article--item--dek').find('span').get_text(
                          strip=True)
                      # 文章更新时间
                      publish_time = card.find('p', 'term-page--news-article--item--publication-date').find('time').get(
                          'datetime')
                      updateTime = datetime.strptime(publish_time, '%Y-%m-%dT%H:%M:%SZ')
                      # 文章地址
                      temp_url = card.find('div', 'term-page--news-article--item--cover-image').find('a').get('href')
                      url = 'https://news.mit.edu' + temp_url
                      # 文章id
                      pattern = r'(\w+(-\w+)*)-(\d+)'
                      match = re.search(pattern, temp_url)
                      card_id = str(match.group(0))
                      card_response = requests.get(url, headers=self.headers)
                      soup = BeautifulSoup(card_response.text, 'html.parser')
                      # 原始htmldom结构
                      html_title = soup.find('div', id='block-mit-page-title')
                      html_content = soup.find('div', id='block-mit-content')
                      # 合并标题和内容
                      html_title.append(html_content)
                      html_cut1 = soup.find('div', 'news-article--topics')
                      html_cut2 = soup.find('div', 'news-article--archives')
                      html_cut3 = soup.find('div', 'news-article--content--side-column')
                      html_cut4 = soup.find('div', 'news-article--press-inquiries')
                      html_cut5 = soup.find_all('div', 'visually-hidden')
                      html_cut6 = soup.find('p', 'news-article--images-gallery--nav--inner')
                      # 移除元素
                      if html_cut1:
                          html_cut1.extract()
                      if html_cut2:
                          html_cut2.extract()
                      if html_cut3:
                          html_cut3.extract()
                      if html_cut4:
                          html_cut4.extract()
                      if html_cut5:
                          for item in html_cut5:
                              item.extract()
                      if html_cut6:
                          html_cut6.extract()
                      # 获取合并后的内容文本
                      html_content = html_title
                      # 文章作者
                      author_list = html_content.find('div', 'news-article--authored-by').find_all('span')
                      author = ''
                      for item in author_list:
                          author = author + item.get_text()
                      # 增加保留html样式的源文本
                      origin_html = html_content.prettify()  # String
                      # 转义网页中的图片标签
                      str_html = self.transcoding_tags(origin_html)
                      # 再包装成
                      temp_soup = BeautifulSoup(str_html, 'html.parser')
                      # 反转译文件中的插图
                      str_html = self.translate_tags(temp_soup.text)
                      # 绑定更新内容
                      content = self.clean_content(str_html)
                      # 下载图片
                      imgs = []
                      img_array = soup.find_all('div', 'news-article--image-item')
                      for item in img_array:
                          img_url = self.root_url + item.find('img').get('data-src')
                          imgs.append(img_url)
                      if len(imgs) != 0:
                          # 下载图片
                          illustrations = self.download_images(imgs, card_id)
                      # 连接 MongoDB 数据库服务器
                      client = MongoClient('mongodb://localhost:27017/')
                      # 创建或选择数据库
                      db = client['mit-news']
                      # 创建或选择集合
                      cards_collection = db['cards']
                      # 插入示例数据到 catalogues 集合
                      card_data = {
                          'id': card_id,
                          'catalogueId': catalogue_id,
                          'type': 'mit-news',
                          'date': date,
                          'title': card_title,
                          'author': author,
                          'card_introduction': card_introduction,
                          'updatetime': updateTime,
                          'url': url,
                          'html_content': str(html_content),
                          'content': content,
                          'illustrations': illustrations,
                      }
                      cards_collection.insert_one(card_data)
                  return True
              else:
                  raise Exception(f"Failed to fetch page {page}. Status code: {response.status_code}")
          # 下载图片
          def download_images(self, img_urls, card_id):
              # 根据card_id创建一个新的子目录
              images_dir = os.path.join(self.img_output_dir, card_id)
              if not os.path.exists(images_dir):
                  os.makedirs(images_dir)
                  downloaded_images = []
                  for index, img_url in enumerate(img_urls):
                      try:
                          response = requests.get(img_url, stream=True, headers=self.headers)
                          if response.status_code == 200:
                              # 从URL中提取图片文件名
                              img_name_with_extension = img_url.split('/')[-1]
                              pattern = r'^[^?]*'
                              match = re.search(pattern, img_name_with_extension)
                              img_name = match.group(0)
                              # 保存图片
                              with open(os.path.join(images_dir, img_name), 'wb') as f:
                                  f.write(response.content)
                              downloaded_images.append([img_url, os.path.join(images_dir, img_name)])
                      except requests.exceptions.RequestException as e:
                          print(f'请求图片时发生错误:{e}')
                      except Exception as e:
                          print(f'保存图片时发生错误:{e}')
                  return downloaded_images
              # 如果文件夹存在则跳过
              else:
                  print(f'文章id为{card_id}的图片文件夹已经存在')
                  return []
          # 工具 转义标签
          def transcoding_tags(self, htmlstr):
              re_img = re.compile(r'\s*<(img.*?)>\s*', re.M)
              s = re_img.sub(r'\n @@##\1##@@ \n', htmlstr)  # IMG 转义
              return s
          # 工具 转义标签
          def translate_tags(self, htmlstr):
              re_img = re.compile(r'@@##(img.*?)##@@', re.M)
              s = re_img.sub(r'<>', htmlstr)  # IMG 转义
              return s
          # 清洗文章
          def clean_content(self, content):
              if content is not None:
                  content = re.sub(r'\r', r'\n', content)
                  content = re.sub(r'\n{2,}', '', content)
                  content = re.sub(r' {6,}', '', content)
                  content = re.sub(r' {3,}\n', '', content)
                  content = re.sub(r'初级爬虫实战——麻省理工学院新闻,第12张', '', content)
                  content = content.replace(
                      '初级爬虫实战——麻省理工学院新闻,第13张 ', '')
                  content = content.replace(
                      '''