后端接收时的代码:
xx=request.form.get('xx');
xx=request.form['xx']
xx=request.args.get(xx)
传送单个数据:
return render_template('html文件',xx='xx')
传送多个数据:先把数据写进字典,字典整体进行传输
return render_template('html文件',xx='字典变量')
目录结构:

index.py文件:
# --*-- coding:utf-8 --*--
# @Author : 一只楚楚猫
# @File : index.py
# @Software : PyCharm
from flask import *
from sentence_transformers import SentenceTransformer
import torch.nn as nn
import torch
import torch.nn.functional as F
model = SentenceTransformer(r'E:\楚楚猫\code\python\01design\01creativity\01distance\all-MiniLM-L6-v2')
app = Flask(__name__)
result = dict()
result["results"] = ""
@app.route('/', methods=('GET', 'POST'))
def index():
global result
if request.method == 'POST':
step1 = request.form.get("step1")
step2 = request.form.get("step2")
step3 = request.form.get("step3")
step4 = request.form.get("step4")
# 用户输入的内容
sentences = [step1, step2, step3, step4]
results = list()
# 384维
embeddings = torch.FloatTensor(model.encode(sentences))
# p=2就是计算欧氏距离,p=1就是曼哈顿距离
euclidean_distance = nn.PairwiseDistance(p=2)
for i in range(0, embeddings.size()[0]):
for j in range(i + 1, embeddings.size()[0]):
cosine_similarity = round(F.cosine_similarity(embeddings[i], embeddings[j], dim=0).item(), 4)
distance = round(euclidean_distance(embeddings[i], embeddings[j]).item(), 4)
results.append(
f"step{i + 1} & step{j + 1}的相关性:{cosine_similarity} step{i + 1} & step{j + 1}的距离:{distance}")
print(
f"step{i + 1} & step{j + 1}之间的相关性:{cosine_similarity}step{i + 1} & step{j + 1}之间的距离:{distance}")
result["results"] = results
return render_template('hello.html', result=result)
return render_template('hello.html', result=result)
if __name__ == '__main__':
app.run(port=11252)
hello.html文件:
欢迎来到我的世界