【周末闲谈】“深度学习”,人工智能也要学习?
作者:mmseoamin日期:2024-01-19

【周末闲谈】“深度学习”,人工智能也要学习?,在这里插入图片描述,第1张

个人主页:【😊个人主页】

系列专栏:【❤️周末闲谈】

系列目录

✨第一周 二进制VS三进制

✨第二周 文心一言,模仿还是超越?

✨第二周 畅想AR


文章目录

  • 系列目录
  • 前言
  • 机器学习
  • 深度学习
  • 深度学习的三在种方法
  • 深度学习讲解
    • 成就

      前言

      人们在日常生活中接触人工智能的频率越来越高。有可以帮用户买菜的京东智能冰箱;可以做自动翻译的机器;还有Siri、Alexa和Cortana这样的机器人助理;以及无人车、AlphaGo等已经把人工智能技术带到了“看得到摸得着”的境地。我们也许会好奇,它是怎么做到的?今天我们就来谈谈人工智能的学习方式——深度学习。

      【周末闲谈】“深度学习”,人工智能也要学习?,在这里插入图片描述,第2张

      机器学习

      机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

      机器学习有下面几种定义:

      (1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。

      (2)机器学习是对能通过经验自动改进的计算机算法的研究。

      (3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。

      它是人工智能核心,是使计算机具有智能的根本途径。

      深度学习

      深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)

      深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术

      【周末闲谈】“深度学习”,人工智能也要学习?,在这里插入图片描述,第3张

      它是一个多层神经网络是一种机器学习方法。在深度学习出现之前,由于诸如局部最优解和梯度消失之类的技术问题,没有对具有四层或更多层的深度神经网络进行充分的训练,并且其性能也不佳。但是,近年来,Hinton等人通过研究多层神经网络,提高学习所需的计算机功能以及通过Web的开发促进培训数据的采购,使充分学习成为可能。结果,它显示出高性能,压倒了其他方法,解决了与语音,图像和自然语言有关的问题。

      【周末闲谈】“深度学习”,人工智能也要学习?,在这里插入图片描述,第4张

      深度学习的三在种方法

      深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:

      1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。

      2)基于多层神经元的自编码神经网络,包括自编码(Auto encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)。

      3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。

      深度学习讲解

      深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。

      从一个输入中产生一个输出所涉及的计算可以通过一个流向图(flow graph)来表示:流向图是一种能够表示计算的图,在这种图中每一个节点表示一个基本的计算以及一个计算的值,计算的结果被应用到这个节点的子节点的值。考虑这样一个计算集合,它可以被允许在每一个节点和可能的图结构中,并定义了一个函数族。输入节点没有父节点,输出节点没有子节点。

      这种流向图的一个特别属性是深度(depth):从一个输入到一个输出的最长路径的长度。

      传统的前馈神经网络能够被看作拥有等于层数的深度(比如对于输出层为隐层数加1)。SVMs有深度2(一个对应于核输出或者特征空间,另一个对应于所产生输出的线性混合)。

      人工智能研究的方向之一,是以所谓 “专家系统” 为代表的,用大量 “如果-就”(If - Then)规则定义的,自上而下的思路。人工神经网络(Artificial Neural Network),标志着另外一种自下而上的思路。神经网络没有一个严格的正式定义。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式

      成就

      深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。