相关推荐recommended
FlinkSql概述
作者:mmseoamin日期:2024-03-20

FlinkSql概述

  • 一、Flink SQL概述
    • 1.流处理中的表
    • 2.将流转换成动态表
    • 3.将动态表转换为流
    • 二、时间属性
      • 1.事件时间
      • 2.处理时间

        一、Flink SQL概述

        FlinkSql概述,在这里插入图片描述,第1张

        Table API和SQL是最上层的API,在Flink中这两种API被集成在一起,SQL执行的对象也是Flink中的表(Table),所以我们一般会认为它们是一体的。Flink是批流统一的处理框架,无论是批处理(DataSet API)还是流处理(DataStream API),在上层应用中都可以直接使用Table API或者SQL来实现;这两种API对于一张表执行相同的查询操作,得到的结果是完全一样的。

        需要说明的是,Table API和SQL最初并不完善,在Flink 1.9版本合并阿里巴巴内部版本Blink之后发生了非常大的改变,此后也一直处在快速开发和完善的过程中,直到Flink 1.12版本才基本上做到了功能上的完善。而即使是在目前最新的1.17版本中,Table API和SQL也依然不算稳定,接口用法还在不停调整和更新。所以这部分希望大家重在理解原理和基本用法,具体的API调用可以随时关注官网的更新变化。

        SQL API 是基于 SQL 标准的 Apache Calcite 框架实现的,可通过纯 SQL 来开发和运行一个Flink 任务。

        1.流处理中的表

        我们可以将关系型表/SQL与流处理做一个对比,如表所示。

        FlinkSql概述,在这里插入图片描述,第2张

        关系型表和SQL,主要就是针对批处理设计的,这和流处理有着天生的隔阂。接下来我们就来深入探讨一下流处理中表的概念。

        流处理面对的数据是连续不断的,这导致了流处理中的“表”跟我们熟悉的关系型数据库中的表完全不同;而基于表执行的查询操作,也就有了新的含义。

        动态表(Dynamic Tables)

        动态表是Flink在Table API和SQL中的核心概念,它为流数据处理提供了表和SQL支持。我们所熟悉的表一般用来做批处理,面向的是固定的数据集,可以认为是“静态表”;而动态表则完全不同,它里面的数据会随时间变化。

        持续查询(Continuous Query)

        动态表可以像静态的批处理表一样进行查询操作。由于数据在不断变化,因此基于它定义的SQL查询也不可能执行一次就得到最终结果。这样一来,我们对动态表的查询也就永远不会停止,一直在随着新数据的到来而继续执行。这样的查询就被称作“持续查询”(Continuous Query)。对动态表定义的查询操作,都是持续查询;而持续查询的结果也会是一个动态表。

        由于每次数据到来都会触发查询操作,因此可以认为一次查询面对的数据集,就是当前输入动态表中收到的所有数据。这相当于是对输入动态表做了一个“快照”(snapshot),当作有限数据集进行批处理;流式数据的到来会触发连续不断的快照查询,像动画一样连贯起来,就构成了“持续查询”。

        FlinkSql概述,在这里插入图片描述,第3张

        持续查询的步骤如下:

        (1)流(stream)被转换为动态表(dynamic table);

        (2)对动态表进行持续查询(continuous query),生成新的动态表;

        (3)生成的动态表被转换成流。

        这样,只要API将流和动态表的转换封装起来,我们就可以直接在数据流上执行SQL查询,用处理表的方式来做流处理了。

        2.将流转换成动态表

        如果把流看作一张表,那么流中每个数据的到来,都应该看作是对表的一次插入(Insert)操作,会在表的末尾添加一行数据。因为流是连续不断的,而且之前的输出结果无法改变、只能在后面追加;所以我们其实是通过一个只有插入操作(insert-only)的更新日志(changelog)流,来构建一个表。

        FlinkSql概述,在这里插入图片描述,第4张

        更新(Update)查询

        Table urlCountTable = tableEnv
        	.sqlQuery("SELECT user, COUNT(url) as cnt FROM EventTable GROUP BY user");
        

        当原始动态表不停地插入新的数据时,查询得到的urlCountTable会持续地进行更改。由于count数量可能会叠加增长,因此这里的更改操作可以是简单的插入(Insert),也可以是对之前数据的更新(Update)。这种持续查询被称为更新查询(Update Query),更新查询得到的结果表如果想要转换成DataStream,必须调用toChangelogStream()方法。

        FlinkSql概述,在这里插入图片描述,第5张

        追加(Append)查询

        上面的例子中,查询过程用到了分组聚合,结果表中就会产生更新操作。如果我们执行一个简单的条件查询,结果表中就会像原始表EventTable一样,只有插入(Insert)操作了。

        Table aliceVisitTable = tableEnv
        	.sqlQuery("SELECT url, user FROM EventTable WHERE user = 'Cary'");
        

        这样的持续查询,就被称为追加查询(Append Query),它定义的结果表的更新日志(changelog)流中只有INSERT操作。

        FlinkSql概述,在这里插入图片描述,第6张

        由于窗口的统计结果是一次性写入结果表的,所以结果表的更新日志流中只会包含插入INSERT操作,而没有更新UPDATE操作。所以这里的持续查询,依然是一个追加(Append)查询。结果表result如果转换成DataStream,可以直接调用toDataStream()方法。

        3.将动态表转换为流

        与关系型数据库中的表一样,动态表也可以通过插入(Insert)、更新(Update)和删除(Delete)操作,进行持续的更改。将动态表转换为流或将其写入外部系统时,就需要对这些更改操作进行编码,通过发送编码消息的方式告诉外部系统要执行的操作。在Flink中,Table API和SQL支持三种编码方式:

         仅追加(Append-only)流

        仅通过插入(Insert)更改来修改的动态表,可以直接转换为“仅追加”流。这个流中发出的数据,其实就是动态表中新增的每一行。

         撤回(Retract)流

        撤回流是包含两类消息的流,添加(add)消息和撤回(retract)消息。

        具体的编码规则是:INSERT插入操作编码为add消息;DELETE删除操作编码为retract消息;而UPDATE更新操作则编码为被更改行的retract消息,和更新后行(新行)的add消息。这样,我们可以通过编码后的消息指明所有的增删改操作,一个动态表就可以转换为撤回流了。

        FlinkSql概述,在这里插入图片描述,第7张

        通过对流数据打标签的方式,对数据进行规划,让程序识别该数据的可用性。

         更新插入(Upsert)流

        更新插入流中只包含两种类型的消息:更新插入(upsert)消息和删除(delete)消息。

        所谓的“upsert”其实是“update”和“insert”的合成词,所以对于更新插入流来说,INSERT插入操作和UPDATE更新操作,统一被编码为upsert消息;而DELETE删除操作则被编码为delete消息。

        FlinkSql概述,在这里插入图片描述,第8张

        需要注意的是,在代码里将动态表转换为DataStream时,只支持仅追加(append-only)和撤回(retract)流,我们调用toChangelogStream()得到的其实就是撤回流。而连接到外部系统时,则可以支持不同的编码方法,这取决于外部系统本身的特性。

        二、时间属性

        基于时间的操作(比如时间窗口),需要定义相关的时间语义和时间数据来源的信息。在Table API和SQL中,会给表单独提供一个逻辑上的时间字段,专门用来在表处理程序中指示时间。

        所以所谓的时间属性(time attributes),其实就是每个表模式结构(schema)的一部分。它可以在创建表的DDL里直接定义为一个字段,也可以在DataStream转换成表时定义。一旦定义了时间属性,它就可以作为一个普通字段引用,并且可以在基于时间的操作中使用。

        时间属性的数据类型必须为TIMESTAMP,它的行为类似于常规时间戳,可以直接访问并且进行计算。

        按照时间语义的不同,可以把时间属性的定义分成事件时间(event time)和处理时间(processing time)两种情况。

        1.事件时间

        事件时间属性可以在创建表DDL中定义,增加一个字段,通过WATERMARK语句来定义事件时间属性。具体定义方式如下:

        CREATE TABLE EventTable(
          user STRING,
          url STRING,
          ts TIMESTAMP(3), //TIMESTAMP(3)精确到毫秒级
          WATERMARK FOR ts AS ts - INTERVAL '5' SECOND
        ) WITH (
          ...
        );
        

        这里我们把ts字段定义为事件时间属性,而且基于ts设置了5秒的水位线延迟。

        时间戳类型必须是 TIMESTAMP 或者TIMESTAMP_LTZ 类型。但是时间戳一般都是秒或者是毫秒(BIGINT 类型),这种情况可以通过如下方式转换

        ts BIGINT,
        time_ltz AS TO_TIMESTAMP_LTZ(ts, 3)
        

        2.处理时间

        在定义处理时间属性时,必须要额外声明一个字段,专门用来保存当前的处理时间。

        在创建表的DDL(CREATE TABLE语句)中,可以增加一个额外的字段,通过调用系统内置的PROCTIME()函数来指定当前的处理时间属性。

        CREATE TABLE EventTable(
          user STRING,
          url STRING,
          ts AS PROCTIME()
        ) WITH (
          ...
        );