🌈个人主页: Aileen_0v0
🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL|
💫个人格言:“没有罗马,那就自己创造罗马~”
本文转自 周贺贺,baron,代码改变世界ctw,Arm精选, armv8/armv9,trustzone/tee,secureboot,资深安全架构专家,11年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。文章有感而发。
说明: 在默认情况下,本文讲述的都是ARMV8-aarch64架构,linux kernel 64位
随着时代的发展、科技的进步,安全需求的趋势也越来越明显,ARM也一直在调整和更新其新架构,很多都是和安全相关的。 如下列出了一些和安全相关的架构
Trustzone做为ARM安全架构的一部分,从 2008 年 12月 ARM 公司第一次 release Trustzone 技术白皮书。() 2013 年 Apple 推出了第一款搭载指纹解锁的 iPhone:iPhone 5s,用以保证指纹信息安全的 Secure Enclave 技术据分析深度定制了 ARM trustzone 架构,印象中这大概是 Trustzone 技术第一次走进大众视线。到如今 Trustzone 技术已经成为移动安全领域的重要基础技术,你也许不了解它的技术原理,但它一直默默为你守护你的指纹信息,账户密码等各种敏感数据。 如下也列出了一张在Trustzone架构下的一张指纹的框图,这也是这些年(2015-至今)比较流行的一张软件框图。 |
从上文我们已经知道, ARM Trustzone不具体指一个硬件,也不是一个软件,而是一个技术架构,在支持ARM Trustzone的SOC中,需按照ARM Trustzone技术对各个子模块进行设计。如下便展示了一个SOC的Trustzone架构下的设计框图 |
其中:
ARPROT[2:0]和AWPROT[2:0] 分别是读通道和写通道中的关于权限的信号,例如他们中的BIT[1]则分别表示正是进行secure身份的读或secure身份的写操作。
SCR_EL3.NS 表示当前processor的安全状态,NS=1表示是non-secure的,NS=0表示是Secure的
TZC400接在core和(DMC)DDR之间,相当于一个memory filter。 TZC400一般可以配置8个region(算上特殊region0, 也可以说9个),然后可以对每一个region配置权限。例如讲一块region配置成secure RW的,那么当有non-secure的master来访问这块内存时,将会被TZC挡住。
首页,在软件架构的设计中,就分为: Non-secure EL0&1 Transslation Regime 和 Secure EL0&1 Transslation Regime,即normal world和secure world侧使用不同的Transslation Regime;
其实就是使用不同的TTBRx_ELn寄存器,使用不同得页表 其次,在MMU使用的页表中,也有NS比特位。
Non-secure Transslation Regime 只能翻译NS=1的页表项,secure Transslation Regime 可以翻译NS=1和NS=0的页表项。
即secure的页表可以映射non-secure或secure的内存,而non-secure的页表只能去映射non-secure的内存,否则在转换时会发生错误 在Page Descriptor中(页表entry中),有NS比特位(BIT[5]),表示当前的映射的内存属于安全内存还是非安全内存:
如下所示,以为cortex-A78为例,L1 Data Cache TAG中 ,有一个NS比特位(BIT[33]),表示当前缓存的cacheline是secure的还是non-secure的
如下所示,以为cortex-A78为例,L1 Data TLB entry中 ,有一个NS比特位(BIT[35]),表示当前缓存的entry是secure的还是non-secure的
在gicv2/gicv3中,支持了安全中断,配置有如下: (1)、Group分组(GICD_IGROUPRn) – gicv2 ◾group0:安全中断,由nFIQ驱动 ◾group1:非安全中断,由nIRQ驱动
(2)、Group分组(GICD_IGROUPRn)– gicv3 ◾group0:安全中断 ◾non-secure group1:非安全中断 ◾secure group1:安全中断
ARM Trustzone技术对软件框架带来了变化
AArch32和AArch64 secure monitor的理解:
在安全架构的设计时,我们在Core和DDR之间增加了一个TZC做为memory filter,数据流为:Core ---> TZC---->DDR, 这种架构下,core以非安全身份发起的对安全内存的读写,将会被TZC挡住。
但是这都是在理想的情况下,事实上Core发起对内存的读写,未必经过TZC未必到DDR,有可能到cache阶段就完成了,即数据流变成了Core ---> MMU(TLB+Addtress Translation)---->Cache,那么这种情况下,没有TZC的事了,你也许会说MMU/Cache中都有NS比特,但是你真的理解这里NS比特的用法吗? 如果core以非安全身份对安全内存发起的读写时,我强制将MMU页表中的安全属性标记位强制改成NS=0,会如何呢?
事实上我们只要理清原理、理清数据流 ,就不会问上面那么S13的问题了。 下面来开始剖析:
假设一个安全core 读取了一个安全物理内存0x2000_0000数据(虚拟地址可能是0x_xxxx_xxxx),那么将产生一下行为:
同时,我有一个非安全core 发起读写虚拟地址0x_yyyy_yyyy,我自行修改该页表,让0x_yyyy_yyyy强制映射到安全物理内存0x2000_0000,此时有两种配置: (1)、0x_yyyy_yyyy—0x2000_0000, NS=0 (2)、0x_yyyy_yyyy—0x2000_0000, NS=1 我们分别看下这两种配置,是否能读到安全内存: 针对(1),非安全的core发起访问,发现TLB中的条目是0x_yyyy_yyyy—0x2000_0000, NS=0,自然不会被命中,然后使用Address Translation转换,MMU发现非安全的Core要来访问安全属性NS=0 将会被直接拒绝掉。 针对(2),非安全的core发起访问,由于NS=1,TLB可能会被命中,即能翻译出0x2000_0000物理地址来,即使没有被命中,在经过Address Translation转换,由于NS=1,此时也是可以正确转换出正确的0x2000_0000物理地址。 然后接着会去cache中查询这个地址,但是此时cache的entry中的NS=0,所以cache不会被命中,接下来就要走TZC流程了,很显然,你一个非安全的core想访问安全的内存,TZC将会挡住你。
综上所述:安全就是安全,不要再想漏洞了。 |