生产环境,某云的某个业务Redis实例,触发内存使用率,连续 3 次 平均值 >= 85 %告警。
运维同学告知,看看需要怎么优化或者升级配置?分享了其实例RDB的内存剖析链接。
通过内存剖析详情发现,存在某类未设置过期时间且无用的keys,其内存占用约3.8GB,内存占比25%。
内存占比挺大,有确定的成本经济收益。
做事有动力啦!
某云Redis实例的基本信息
某云的Redis RDB内存剖析
变更三板斧:可灰度、可观测/可监控、可回滚
使用spring-data-redis提供的RedisCacheWriter#clean开源解决方案,在其基础上加入异步和并发控制。
清理途中,觉得每批10个key有些慢,调整到每批20个key。
【注意】应用重启后,会重新从头开始扫描,存在一段时间未删除keys,需要等一会才能看到删除效果。
不建议中途调整每批key数量!
CPU使用率,增长1~3%
已使用内存总量,15.5GB -> 10.22GB
每批10个key,时延增长2~3微秒
每批20个key,时延增长7~13微秒
del: 200
scan: 375
scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。
import java.nio.charset.StandardCharsets; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.ExecutorService; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import cn.hutool.core.thread.ThreadFactoryBuilder; import com.spring.boot.redis.example.model.CacheKey; import com.spring.boot.redis.example.service.CacheService; import lombok.extern.slf4j.Slf4j; import org.springframework.data.redis.cache.BatchStrategies; import org.springframework.data.redis.cache.RedisCacheWriter; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.stereotype.Service; import org.springframework.util.StopWatch; /** * 缓存服务实现 * * @author guang.yi * @since 2023/7/30 */ @Slf4j @Service("cacheService") public class CacheServiceImpl implements CacheService { /** * 并发开关 */ private final ConcurrentMapconcurrentSwitch = new ConcurrentHashMap<>(16); private final ExecutorService executorService = new ThreadPoolExecutor( 1, 1, 5L, TimeUnit.MINUTES, new ArrayBlockingQueue<>(1), new ThreadFactoryBuilder().setNamePrefix("cache-clean-") .setDaemon(true).build() ); private final RedisConnectionFactory redisConnectionFactory; public CacheServiceImpl( RedisConnectionFactory redisConnectionFactory ) { this.redisConnectionFactory = redisConnectionFactory; log.info("create CacheServiceImpl"); } @Override public boolean cleanCache(CacheKey cacheKey) { String keyPattern = cacheKey.getKeyPattern(); // 避免多次重复地操作 if (concurrentSwitch.putIfAbsent(keyPattern, Boolean.TRUE) == null) { // 异步地执行 executorService.execute(() -> this.clean(cacheKey)); return true; } return false; } private void clean(CacheKey cacheKey) { log.info("cleanCache start, cacheKey={}", cacheKey); StopWatch stopWatch = new StopWatch("cleanCache"); stopWatch.start(); this.clean(cacheKey.getCacheName(), cacheKey.getKeyPattern()); stopWatch.stop(); log.info("cleanCache end, cacheKey={}, stopWatch={}", cacheKey, stopWatch); } /** * 缓存Redis的历史数据清理 * * 【批量策略】在线异步地批量扫描匹配删除,每批10个key * 先SCAN,再批量DEL * 【执行策略】预发环境,业务低峰时期 ** * @see org.springframework.data.redis.cache.RedisCacheWriter#clean * @see org.springframework.data.redis.cache.DefaultRedisCacheWriter#clean */ private void clean(String cacheName, String keyPattern) { // 【批量策略】SCAN,每批10个key RedisCacheWriter redisCacheWriter = RedisCacheWriter.nonLockingRedisCacheWriter( redisConnectionFactory, BatchStrategies.scan(10)); // 先SCAN,再批量DEL redisCacheWriter.clean(cacheName, keyPattern.getBytes(StandardCharsets.UTF_8)); } }
# .A.1. Core Properties spring: # RedisProperties redis: database: 0 host: "localhost" port: 6379 timeout: 1s connect-timeout: 300ms # client-name: "user-cache" # client-type: lettuce # sentinel: # master: "" # nodes: "host:port" # cluster: # nodes: "host:port" # max-redirects: 3 # jedis: # pool: # enabled: true # max-idle: 8 # min-idle: 0 # max-active: 8 # max-wait: 300ms # time-between-eviction-runs: 5m lettuce: shutdown-timeout: 100ms pool: enabled: true max-idle: 8 min-idle: 0 max-active: 8 max-wait: -1 time-between-eviction-runs: 5m
深入源代码,深究实现细节,趴开裤子看看底细。
源代码做了简化
深入源代码看,scan批量策略的实现方案靠谱。keys批量策略存在大坑,不靠谱。
scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。
org.springframework.data.redis.cache.RedisCacheWriter#clean
BatchStrategy批量策略,有keys和scan两种,分别对应Redis的KEYS和SCAN命令。
批量策略默认使用keys,对于真实业务使用场景,一点都不实用。
因为KEYS命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量DEL删除命令。
对于大量的keys需要删除时,其操作可能夯住线上Redis实例,存在严重影响Redis实例干活的风险。
package org.springframework.data.redis.cache; import java.time.Duration; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.lang.Nullable; import org.springframework.util.Assert; /** * {@link RedisCacheWriter} provides low level access to Redis commands ({@code SET, SETNX, GET, EXPIRE,...}) used for * caching.
* The {@link RedisCacheWriter} may be shared by multiple cache implementations and is responsible for writing / reading * binary data to / from Redis. The implementation honors potential cache lock flags that might be set. ** The default {@link RedisCacheWriter} implementation can be customized with {@link BatchStrategy} to tune performance * behavior. * * @author Christoph Strobl * @author Mark Paluch * @since 2.0 */ public interface RedisCacheWriter extends CacheStatisticsProvider { /** * Create new {@link RedisCacheWriter} without locking behavior. * * @param connectionFactory must not be {@literal null}. * @return new instance of {@link DefaultRedisCacheWriter}. */ static RedisCacheWriter nonLockingRedisCacheWriter(RedisConnectionFactory connectionFactory) { return nonLockingRedisCacheWriter(connectionFactory, BatchStrategies.keys()); } /** * Create new {@link RedisCacheWriter} without locking behavior. * * @param connectionFactory must not be {@literal null}. * @param batchStrategy must not be {@literal null}. * @return new instance of {@link DefaultRedisCacheWriter}. * @since 2.6 */ static RedisCacheWriter nonLockingRedisCacheWriter(RedisConnectionFactory connectionFactory, BatchStrategy batchStrategy) { Assert.notNull(connectionFactory, "ConnectionFactory must not be null!"); Assert.notNull(batchStrategy, "BatchStrategy must not be null!"); return new DefaultRedisCacheWriter(connectionFactory, batchStrategy); } /** * Remove all keys following the given pattern. * 按照给定模式删除所有键。 * * @param name The cache name must not be {@literal null}. * @param pattern The pattern for the keys to remove. Must not be {@literal null}. */ void clean(String name, byte[] pattern); }
源代码做了简化
RedisCacheWriter#clean默认实现是org.springframework.data.redis.cache.DefaultRedisCacheWriter#clean
通过批量策略清理缓存数据batchStrategy.cleanCache(connection, name, pattern)
package org.springframework.data.redis.cache; import java.nio.charset.StandardCharsets; import java.time.Duration; import java.util.concurrent.TimeUnit; import java.util.function.Consumer; import java.util.function.Function; import org.springframework.dao.PessimisticLockingFailureException; import org.springframework.data.redis.connection.RedisConnection; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.connection.RedisStringCommands.SetOption; import org.springframework.data.redis.core.types.Expiration; import org.springframework.lang.Nullable; import org.springframework.util.Assert; /** * {@link RedisCacheWriter} implementation capable of reading/writing binary data from/to Redis in {@literal standalone} * and {@literal cluster} environments. Works upon a given {@link RedisConnectionFactory} to obtain the actual * {@link RedisConnection}.
* {@link DefaultRedisCacheWriter} can be used in * {@link RedisCacheWriter#lockingRedisCacheWriter(RedisConnectionFactory) locking} or * {@link RedisCacheWriter#nonLockingRedisCacheWriter(RedisConnectionFactory) non-locking} mode. While * {@literal non-locking} aims for maximum performance it may result in overlapping, non atomic, command execution for * operations spanning multiple Redis interactions like {@code putIfAbsent}. The {@literal locking} counterpart prevents * command overlap by setting an explicit lock key and checking against presence of this key which leads to additional * requests and potential command wait times. * * @author Christoph Strobl * @author Mark Paluch * @author André Prata * @since 2.0 */ class DefaultRedisCacheWriter implements RedisCacheWriter { private final RedisConnectionFactory connectionFactory; private final Duration sleepTime; private final CacheStatisticsCollector statistics; private final BatchStrategy batchStrategy; /* * (non-Javadoc) * @see org.springframework.data.redis.cache.RedisCacheWriter#clean(java.lang.String, byte[]) */ @Override public void clean(String name, byte[] pattern) { Assert.notNull(name, "Name must not be null!"); Assert.notNull(pattern, "Pattern must not be null!"); execute(name, connection -> { boolean wasLocked = false; try { if (isLockingCacheWriter()) { doLock(name, connection); wasLocked = true; } // 通过批量策略清理缓存数据 long deleteCount = batchStrategy.cleanCache(connection, name, pattern); while (deleteCount > Integer.MAX_VALUE) { statistics.incDeletesBy(name, Integer.MAX_VALUE); deleteCount -= Integer.MAX_VALUE; } statistics.incDeletesBy(name, (int) deleteCount); } finally { if (wasLocked && isLockingCacheWriter()) { doUnlock(name, connection); } } return "OK"; }); } }
org.springframework.data.redis.cache.BatchStrategy
package org.springframework.data.redis.cache; import org.springframework.data.redis.connection.RedisConnection; /** * A {@link BatchStrategy} to be used with {@link RedisCacheWriter}. ** Mainly used to clear the cache. *
* Predefined strategies using the {@link BatchStrategies#keys() KEYS} or {@link BatchStrategies#scan(int) SCAN} * commands can be found in {@link BatchStrategies}. * * @author Mark Paluch * @author Christoph Strobl * @since 2.6 */ public interface BatchStrategy { /** * Remove all keys following the given pattern. * * @param connection the connection to use. Must not be {@literal null}. * @param name The cache name. Must not be {@literal null}. * @param pattern The pattern for the keys to remove. Must not be {@literal null}. * @return number of removed keys. */ long cleanCache(RedisConnection connection, String name, byte[] pattern); }
org.springframework.data.redis.cache.BatchStrategies
BatchStrategy批量策略,有keys和scan两种,分别对应Redis的KEYS和SCAN命令。
scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。
keys批量策略,对于真实业务使用场景,一点都不实用。
因为KEYS命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量DEL删除命令。
对于大量的keys需要删除时,其操作可能夯住线上Redis实例,存在严重影响Redis实例干活的风险。
package org.springframework.data.redis.cache; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.List; import java.util.NoSuchElementException; import java.util.Optional; import org.springframework.data.redis.connection.RedisConnection; import org.springframework.data.redis.core.Cursor; import org.springframework.data.redis.core.ScanOptions; import org.springframework.util.Assert; /** * A collection of predefined {@link BatchStrategy} implementations using {@code KEYS} or {@code SCAN} command. * * @author Mark Paluch * @author Christoph Strobl * @since 2.6 */ public abstract class BatchStrategies { private BatchStrategies() { // can't touch this - oh-oh oh oh oh-oh-oh } /** * A {@link BatchStrategy} using a single {@code KEYS} and {@code DEL} command to remove all matching keys. * {@code KEYS} scans the entire keyspace of the Redis database and can block the Redis worker thread for a long time * on large keyspaces. ** {@code KEYS} is supported for standalone and clustered (sharded) Redis operation modes. * * @return batching strategy using {@code KEYS}. */ public static BatchStrategy keys() { return Keys.INSTANCE; } /** * A {@link BatchStrategy} using a {@code SCAN} cursors and potentially multiple {@code DEL} commands to remove all * matching keys. This strategy allows a configurable batch size to optimize for scan batching. *
* Note that using the {@code SCAN} strategy might be not supported on all drivers and Redis operation modes. * * @return batching strategy using {@code SCAN}. */ public static BatchStrategy scan(int batchSize) { Assert.isTrue(batchSize > 0, "Batch size must be greater than zero!"); return new Scan(batchSize); } /** * {@link BatchStrategy} using {@code KEYS}. */ static class Keys implements BatchStrategy { static Keys INSTANCE = new Keys(); @Override public long cleanCache(RedisConnection connection, String name, byte[] pattern) { // `KEYS`命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量`DEL`删除命令 byte[][] keys = Optional.ofNullable(connection.keys(pattern)).orElse(Collections.emptySet()) .toArray(new byte[0][]); if (keys.length > 0) { connection.del(keys); } return keys.length; } } /** * {@link BatchStrategy} using {@code SCAN}. */ static class Scan implements BatchStrategy { private final int batchSize; Scan(int batchSize) { this.batchSize = batchSize; } @Override public long cleanCache(RedisConnection connection, String name, byte[] pattern) { // 批量扫描匹配删除,每批10/20个key // 先SCAN匹配,再批量DEL // SCAN(keyPattern, match, batchSize) + DEL(allMatchKeys, batchSize) Cursor
cursor = connection.scan(ScanOptions.scanOptions().count(batchSize).match(pattern).build()); long count = 0; PartitionIterator partitions = new PartitionIterator<>(cursor, batchSize); while (partitions.hasNext()) { List keys = partitions.next(); count += keys.size(); if (keys.size() > 0) { connection.del(keys.toArray(new byte[0][])); } } return count; } } /** * Utility to split and buffer outcome from a {@link Iterator} into {@link List lists} of {@code T} with a maximum * chunks {@code size}. * * @param */ static class PartitionIterator implements Iterator > { private final Iterator
iterator; private final int size; PartitionIterator(Iterator iterator, int size) { this.iterator = iterator; this.size = size; } @Override public boolean hasNext() { return iterator.hasNext(); } @Override public List next() { if (!hasNext()) { throw new NoSuchElementException(); } List list = new ArrayList<>(size); while (list.size() < size && iterator.hasNext()) { list.add(iterator.next()); } return list; } } }
献给杭州2023年的第一场雪❄️
2023.12.18
上一篇:MySQL——CC++连接数据库