Kafka的简介及架构
作者:mmseoamin日期:2024-01-19

目录

消息队列

产生背景

消息队列介绍

常见的消息队列产品

应用场景

 消息队列的消息模型

Kafka的基本介绍

简介

Kafka的架构

Kafka的使用

Kafka的shell命令

Kafka的Python API的操作

完成生产者代码

完成消费者代码


消息队列

产生背景

消息队列:指数据在一个容器中,从容器中一端传递到另一端过程

消息:指的数据,只不过这个这个数据存在一定流动状态

队列:指的容器,可以存储数据,这个容器具备FIFO(先进先出)特性

公共容器的特点:

1.公共性:各个程序都可以与之对接

2.FIFO特性:先进先出

3.具备高效的并发能力:能够承载海量数据

4.具备一定的容错能力:比如支持重新读取消息方案

消息队列介绍

常见的消息队列产品

MQ:message queue消息队列

activeMQ: 出现时期比较早的一款消息队列的中间件产品,在早期使用人群是非常多,目前整个社区活跃度严重下降,使用人群基本很少

rabbitMQ: 此款是目前使用人群比较多的一款消息队列的中间件的产品,社区活跃度比较高,主要是应用传统业务领域中

rocketMQ: 是阿里推出的一款消息队列的中间件的产品,目前主要是在阿里系环境中使用,目前支持的客户端比较少,主要是Java中应用较多

Kafka: Apache旗下的顶级开源消息,是一款消息队列的中间件产品,项目来源于领英,是大数据体系中目前为止最为常用的一款消息队列产品

应用场景

消息队列的应用场景:

1.应用解耦合

2.异步处理

3.限流削峰

4.消息驱动系统

 消息队列的消息模型

在Java中, 为了能够集成消息队列的产品, 专门提供了一个消息队列的协议: JMS(Java Message Server)  java消息服务

消息队列中两个角色:生产者(producer)和消费者(consumer)

生产者:生产/发送消息到消息队列中

消费者:从消息队列中获取消息

在JMS规范中,专门规定了两种消息消费类型:

1.点对点消费类型:一条消息最终只能被一个消费所消费,微信聊天的私聊

2.发布订阅消费模型:指一条消息最终被多个消费者所消费,微信聊天的群聊

Kafka的基本介绍

简介

Kafka是一款消息队列中间件产品,来源于领英公司,后期贡献给了Apache,目前是Apache旗下的顶级开源项目,采用语言是Scala

Kafka的特点:

1.可靠性:Kafka集群是分布式的,有多副本机制,数据可以自动复制

2.可扩展性:Kafka集群可以灵活的调整,在线扩容

3.耐用性:Kafka数据保存在磁盘上,数据有多副本机制,数据持久化,一定程度上防止数据丢失

4.高性能:Kafka可以存储海量的数据,虽然是使用磁盘进行存储,但是Kafka有各种优化手段(例如:磁盘的顺序读写,零拷贝等)提高数据的读写速度(吞吐量)

Kafka的架构

Kafka的简介及架构,第1张

1. Kafka中集群节点叫broker,节点与节点之间没有主从之分,地位是完全一样

2.Topic:主题/话题,是业务层面对消息进行分类的

3.一个Topic可以设置多个分区

4.同一个partition分区可以设置多个副本,但是副本数不能超过(>)集群broker节点的个数

5.broker节点间没有主从之分,但是同一个partition分区的不同副本间有主从之分,分为Leader主副本和Follwer从副本

6.生产者将数据首先发送给到Leader主副本,接着是Leader主副本主动往Follower从副本上同步消息

7.Zookeeper用来管理集群,以及管理元数据信息

8.ISR同步列表,该列表中存放的是与Leader主副本消息同步程度最接近的Follower从副本,也就是消息最小的一个列表,该列表的作用是当Leader主副本无法对外提供服务的时候,会从该ISR列表中选择一个Follower从副本变成Leader主副本,对外提供服务

相关名词

Kafka Cluster : kafka集群

Topic : 主题/话题

Broker : Kafka中的节点

Producer : 生产者,负责生产/发送消息到Kafka中

Consumer : 消费者,负责从Kafka中获取消息

Partition : 分区,一个Topic可以设置多个分区,没有数量限制

Kafka的使用

Kafka的shell命令

      Kafka本质上是一个消息队列中间件产品,主要负责消息数据的传递,也就说学习Kafka 也就是学习如何使用Kafka生产数据,以及如何使用Kafka来消费数据

创建Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --create --topic test02 --partitions 4 --replication-factor 2

参数说明:

        --bootstrap-server:kafka集群中broker连接信息

        --create:指定操作类型,这里是新建Topic

        --topic:指定要新建的Topic名称

        --partitions:设置Topic的分区数

        --replicattion-factor:设置Topic分区的的副本数

注意:如果副本数超过了集群broker节点个数,会报错

查看Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --list

参数说明:

    --bootstrap-server: Kafka集群中broker连接信息

    --list: 指定操作类型。这里是查看Kafka集群上所有可用的Topic列表

查看具体Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --describe --topic test04

参数说明:

    --bootstrap-server: Kafka集群中broker连接信息

    --describe: 指定操作类型。这里是查看具体Topic信息

模拟生产者Producer

./kafka-console-producer.sh --broker-list node1.itcast.cn:9092,node2.itcast.cn:9092 --topic test04

参数说明:

    --broker-list: Kafka集群中broker连接信息

    --topic: 指定要将消息发送到哪个具体的Topic

 模拟消费者Consumer

./kafka-console-consumer.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --topic test04

参数说明:

    --bootstrap-server: Kafka集群中broker连接信息

    --topic: 指定要从哪个Topic中消费消息

    --from-beginning: 指定该参数以后,会从最旧的地方开始消费

    latest: 消费者(默认)从最新的地方开始消费

    --max-messages: 最多消费的条数。满足条数后,就会自动结束

    --group: 指定消费组名称。一个消费者只能属于一个消费组;一个消费组里面可以有多个消费者。同一个Topic中的同一条数据,只能被同一个消费组中的一个消费者所消费

    

在工作中的参数一般如何使用?

答: 推荐latest、--max-messages、--group一同使用。因为实际企业中Topic的数据量是特别大的,消费、打印都需要消耗服务器的资源,如果不限定消费的最大条数,可能造成服务器宕机。

修改Topic

./kafka-topics.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --alter --topic test01 --partitions 10

分区: 只能增大,不能减小。而且没有数量限制

副本: 既不能增大,也不能减小

查看消费组中有多少个消费者

./kafka-consumer-groups.sh --bootstrap-server node1.itcast.cn:9092,node2.itcast.cn:9092 --group g_01 --members --describe

Kafka的Python API的操作

准备工作:在服务器的节点上安装一个python用于操作Kafka的库

安装命令:

python -m pip install kafka-python -i https://pypi.tuna.tsinghua.edu.cn/simple

API使用的参考文档:

https://kafka-python.readthedocs.io/en/master/usage.html#kafkaproducer

完成生产者代码

import time
from kafka import KafkaProducer
# 同步发送
def sync_send():
    global topic, partition, offset
    # 2.1- 同步发送数据/消息
    metadata = producer.send("test01", value=f"hello_java_{i}".encode("UTF-8")).get()
    # metadata = producer.send("test03",value=f"hello_spark_{i}".encode("UTF-8")).get()
    # 2.2- 获取元信息中的内容
    topic = metadata.topic
    partition = metadata.partition
    """
        offset消息偏移量,从0开始编号。也就是一条消息在分区中的序号/索引
        在不同分区间,消息偏移量是无序
        在同一个分区里面,消息偏移量是有序
    """
    offset = metadata.offset
    print(f"{topic},{partition},{offset},{metadata}")
if __name__ == '__main__':
    # 1- 创建生产者
    producer = KafkaProducer(
        bootstrap_servers=["node1.itcast.cn:9092","node2.itcast.cn:9092"]
    )
    # 2- 发送消息
    for i in range(10):
        # 同步发送
        # sync_send()
        # 2.3- 异步发送
        """
            异步发送,需要等待一下,或者明确关闭Producer生产者
        """
        producer.send("test01", value=f"hello_hive_{i}".encode("UTF-8"))
    time.sleep(1)
    # 3- 释放资源/关闭生产者
    # producer.close()

Kafka的简介及架构,第2张

完成消费者代码

from kafka import KafkaConsumer
if __name__ == '__main__':
    # 1- 创建消费者
    consumer = KafkaConsumer(
        "test01",
        bootstrap_servers=["node1.itcast.cn:9092", "node2.itcast.cn:9092"]
    )
    # 2- 消费消息
    for msg in consumer:
        topic = msg.topic
        partition = msg.partition
        offset = msg.offset
        # key和value消费出来都是bytes数据类型,需要进行解码
        key = msg.key
        value = msg.value
        print(f"{topic},{partition},{offset},{key},{value.decode('UTF-8')},{msg}")